HEAL DSpace

Mean and variability response functions for stochastic systems under dynamic excitation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadopoulos, V en
dc.contributor.author Kokkinos, O en
dc.date.accessioned 2014-03-01T02:53:21Z
dc.date.available 2014-03-01T02:53:21Z
dc.date.issued 2011 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36255
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-80054802858&partnerID=40&md5=9dcc5836cda1d7a65b12bf18c74b5547 en
dc.subject Dynamic variability response functions en
dc.subject Stochastic dynamic systems en
dc.subject Stochastic finite element analysis en
dc.subject Upper bounds en
dc.subject.other Centro earthquake en
dc.subject.other Distribution-free en
dc.subject.other Dynamic excitations en
dc.subject.other Dynamic variability en
dc.subject.other Integral form en
dc.subject.other Linear dynamics en
dc.subject.other Marginal probability en
dc.subject.other Monte Carlo Simulation en
dc.subject.other Non-Gaussian en
dc.subject.other Response functions en
dc.subject.other Single degree of freedom systems en
dc.subject.other Sinusoidal load en
dc.subject.other Standard deviation en
dc.subject.other Static systems en
dc.subject.other Stochastic dynamic response en
dc.subject.other Stochastic dynamic systems en
dc.subject.other Stochastic field en
dc.subject.other Stochastic field modeling en
dc.subject.other Stochastic finite element analysis en
dc.subject.other System property en
dc.subject.other Transient systems en
dc.subject.other Uncertain parameters en
dc.subject.other Upper Bound en
dc.subject.other Variability response functions en
dc.subject.other Civil engineering en
dc.subject.other Computational methods en
dc.subject.other Computer simulation en
dc.subject.other Delay control systems en
dc.subject.other Dynamic response en
dc.subject.other Dynamical systems en
dc.subject.other Earthquakes en
dc.subject.other Engineering geology en
dc.subject.other Finite element method en
dc.subject.other Integral equations en
dc.subject.other Monte Carlo methods en
dc.subject.other Power spectral density en
dc.subject.other Probability distributions en
dc.subject.other Scintillation en
dc.subject.other Spectral density en
dc.subject.other Statistics en
dc.subject.other Stochastic systems en
dc.subject.other Structural dynamics en
dc.subject.other Uncertain systems en
dc.subject.other Uncertainty analysis en
dc.subject.other Probability density function en
dc.title Mean and variability response functions for stochastic systems under dynamic excitation en
heal.type conferenceItem en
heal.publicationDate 2011 en
heal.abstract The concept of the so called Variability Response Function (VRF), recently proposed for statically determinate and indeterminate stochastic systems [1, 2], is extended in this work to linear dynamic stochastic systems. An integral form for the variance of the dynamic response of stochastic systems is considered, involving a Dynamic VRF (DVRF) and the spectral density function of the stochastic field modeling the uncertain system properties. As in the case of static systems, the independence of the DVRF to the spectral density and the marginal probability density function of the stochastic field modeling the uncertain parameters is validated using brute-force Monte Carlo simulations as well as a series of different moving power spectral density functions for the calculation of the DVRF. The uncertain system property considered is the inverse of the elastic modulus (flexibility). It is demonstrated that DVRF is a function of the standard deviation of the stochastic field modeling flexibility. The same integral expression can be used to calculate the mean response of a dynamic system using the concept of the so called Dynamic Mean Response Function (DMRF), which is a function similar to the DVRF [3]. These integral forms can be used to efficiently compute the mean and variance of the transient system response at any time of the dynamic response together with spectral- distribution-free upper bounds. They also provide an insight into the mechanisms controlling the dynamic mean and variability response. In this work this methodology is effectively utilized to estimate the stochastic dynamic response of a single degree of freedom system subjected to a) sinusoidal load at the end of its length and b) El Centro earthquake. In both cases results are drawn for different values of the stochastic field standard deviation and for various Gaussion and non-Gaussian probability distributions. en
heal.journalName ECCOMAS Thematic Conference - COMPDYN 2011: 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering: An IACM Special Interest Conference, Programme en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής