HEAL DSpace

Midterm energy forecasting using fuzzy logic: A comparison of confidence interval estimation techniques

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Elias, ChN en
dc.contributor.author Tsekouras, GJ en
dc.date.accessioned 2014-03-01T02:53:21Z
dc.date.available 2014-03-01T02:53:21Z
dc.date.issued 2011 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36261
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-82955190415&partnerID=40&md5=e8ce457b2241ce9ccac3898b0eeebf94 en
dc.subject Confidence interval en
dc.subject Fuzzy logic en
dc.subject Midterm energy forecasting en
dc.subject Re-sampling technique en
dc.subject.other Confidence interval en
dc.subject.other Confidence interval estimation en
dc.subject.other Energy demands en
dc.subject.other Energy forecasting en
dc.subject.other Energy prediction en
dc.subject.other Forecasting methods en
dc.subject.other Fuzzy logic method en
dc.subject.other Mathematical method en
dc.subject.other Power system loads en
dc.subject.other Resampling en
dc.subject.other Standard deviation en
dc.subject.other Training sets en
dc.subject.other Electric load forecasting en
dc.subject.other Energy management en
dc.subject.other Estimation en
dc.subject.other Financial data processing en
dc.subject.other Forecasting en
dc.subject.other Fuzzy neural networks en
dc.subject.other Membership functions en
dc.subject.other Power transmission en
dc.subject.other Sampling en
dc.subject.other Systems science en
dc.subject.other Fuzzy logic en
dc.title Midterm energy forecasting using fuzzy logic: A comparison of confidence interval estimation techniques en
heal.type conferenceItem en
heal.publicationDate 2011 en
heal.abstract The modern methods for power system load and energy prediction are usually based on artificial neural networks and fuzzy logic, which present satisfactory results. However, the estimation of the confidence intervals can not be applied directly, unlike to the classical forecasting methods. The objective of this paper is to present an optimized fuzzy logic method for midterm energy forecasting, which can use different techniques for the estimation of the confidence interval, such as the statistical calculation based on the forecasting method errors of the training set, the re-sampling technique and a novel analytical mathematical method based on the membership functions. Finally, the next annual energy demand of Greek interconnected power system is estimated analytically. Simultaneously, the standard deviations through the aforementioned techniques are calculated and compared. en
heal.journalName Recent Researches in System Science - Proceedings of the 15th WSEAS International Conference on Systems, Part of the 15th WSEAS CSCC Multiconference en
dc.identifier.spage 446 en
dc.identifier.epage 452 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής