dc.contributor.author |
Papaioannou, I |
en |
dc.contributor.author |
Roussaki, I |
en |
dc.contributor.author |
Anagnostou, M |
en |
dc.date.accessioned |
2014-03-01T02:53:22Z |
|
dc.date.available |
2014-03-01T02:53:22Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36267 |
|
dc.subject |
MLP & RBF Neural Networks |
en |
dc.subject |
Negotiating Agents |
en |
dc.subject |
opponent behaviour prediction |
en |
dc.subject |
Polynomial Approximators |
en |
dc.subject.other |
Automated negotiations |
en |
dc.subject.other |
Business-to-consumer |
en |
dc.subject.other |
E-Commerce |
en |
dc.subject.other |
E-negotiations |
en |
dc.subject.other |
Electronic marketplaces |
en |
dc.subject.other |
Function approximation techniques |
en |
dc.subject.other |
Multi-modal |
en |
dc.subject.other |
Negotiating Agents |
en |
dc.subject.other |
opponent behaviour prediction |
en |
dc.subject.other |
RBF Neural Network |
en |
dc.subject.other |
Research fields |
en |
dc.subject.other |
Engineering research |
en |
dc.subject.other |
Intelligent agents |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Multi-modal opponent behaviour prognosis in E-negotiations |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-21501-8_15 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-21501-8_15 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Automated negotiations introduce a challenging research field that aims to enhance the performance and optimise several aspects of the electronic marketplace. This paper is concerned with the design and evaluation of negotia-tion strategies suitable for intelligent agents acting in Business-to-Consumer e-commerce environments. In order to minimize the cases where an agreement is not reached upon the expiration of its deadline, the client agent is enhanced with various function approximation techniques, which aim to predict the behaviour of the provider agent during the last negotiation rounds. © 2011 Springer-Verlag. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-21501-8_15 |
en |
dc.identifier.volume |
6691 LNCS |
en |
dc.identifier.issue |
PART 1 |
en |
dc.identifier.spage |
113 |
en |
dc.identifier.epage |
123 |
en |