HEAL DSpace

Musical instruments signal analysis and recognition using fractal features

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Zlatintsi, A en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T02:53:22Z
dc.date.available 2014-03-01T02:53:22Z
dc.date.issued 2011 en
dc.identifier.issn 22195491 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36269
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-84863759052&partnerID=40&md5=72aef963d34eca4df16b01d9f1176dfa en
dc.subject.other Descriptors en
dc.subject.other Fractal feature en
dc.subject.other Gaussian mixture models en
dc.subject.other Hidden markov models (HMMs) en
dc.subject.other Mel-frequency cepstral coefficients en
dc.subject.other Multiple time scale en
dc.subject.other Multiscale complexity en
dc.subject.other Multiscale fractals en
dc.subject.other Music classification en
dc.subject.other Music signal analysis en
dc.subject.other Music signals en
dc.subject.other Static and dynamic en
dc.subject.other Wave forms en
dc.subject.other Fractal dimension en
dc.subject.other Hidden Markov models en
dc.subject.other Signal analysis en
dc.subject.other Computer music en
dc.title Musical instruments signal analysis and recognition using fractal features en
heal.type conferenceItem en
heal.publicationDate 2011 en
heal.abstract Analyzing the structure of music signals at multiple time scales is of importance both for modeling music signals and their automatic computer-based recognition. In this paper we propose the multiscale fractal dimension profile as a descriptor useful to quantify the multiscale complexity of the music waveform. We have experimentally found that this descriptor can discriminate several aspects among different music instruments. We compare the descriptiveness of our features against that of Mel frequency cepstral coefficients (MFCCs) using both static and dynamic classifiers, such as Gaussian mixture models (GMMs) and hidden Markov models (HMMs). The methods and features proposed in this paper are promising for music signal analysis and of direct applicability in large-scale music classification tasks. © 2011 EURASIP. en
heal.journalName European Signal Processing Conference en
dc.identifier.spage 684 en
dc.identifier.epage 688 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής