dc.contributor.author |
Sapountzakis, EJ |
en |
dc.contributor.author |
Dikaros, IC |
en |
dc.date.accessioned |
2014-03-01T02:53:23Z |
|
dc.date.available |
2014-03-01T02:53:23Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36278 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-80054805444&partnerID=40&md5=d1454d12613b79c1bb2509f055bac07c |
en |
dc.subject |
Boundary element method |
en |
dc.subject |
Dynamic analysis |
en |
dc.subject |
Flexural-torsional analysis |
en |
dc.subject |
Nonlinear analysis |
en |
dc.subject |
Shortening effect |
en |
dc.subject |
Wagner's coefficients |
en |
dc.subject.other |
Analog equation methods |
en |
dc.subject.other |
Analysis of beams |
en |
dc.subject.other |
Axial displacements |
en |
dc.subject.other |
Beams of arbitrary cross-sections |
en |
dc.subject.other |
Cross section |
en |
dc.subject.other |
Flexural-torsional |
en |
dc.subject.other |
Flexural-torsional analysis |
en |
dc.subject.other |
General boundary conditions |
en |
dc.subject.other |
Large deflection |
en |
dc.subject.other |
Nonlinear effect |
en |
dc.subject.other |
Numerical example |
en |
dc.subject.other |
Shortening effect |
en |
dc.subject.other |
Torsional vibration |
en |
dc.subject.other |
Torsional warping |
en |
dc.subject.other |
Transverse displacements |
en |
dc.subject.other |
Wagner's coefficients |
en |
dc.subject.other |
Warping constant |
en |
dc.subject.other |
Civil engineering |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Dynamic analysis |
en |
dc.subject.other |
Earthquakes |
en |
dc.subject.other |
Engineering geology |
en |
dc.subject.other |
Nonlinear analysis |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Structural dynamics |
en |
dc.subject.other |
Vibration analysis |
en |
dc.subject.other |
Boundary element method |
en |
dc.title |
Nonlinear effects in elastic flexural - Torsional vibrations of beams of arbitrary cross section |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this paper a boundary element method is developed for the nonlinear flexural-torsional dynamic analysis of beams of arbitrary, simply or multiply connected, constant cross section, undergoing moderate large deflections and rotations under general boundary conditions, taking into account the effects of rotary and torsional warping inertia. Four boundary value problems are formulated with respect to the transverse displacements, to the axial displacement and to the angle of twist and solved using the Analog Equation Method, a BEM based method. The geometric, inertia, torsion and warping constants are evaluated employing the Boundary Element Method. The proposed model takes into account, both the Wagner's coefficients and the shortening effect. Numerical examples are worked out to illustrate the efficiency, wherever possible the accuracy, the range of applications of the developed method as well as the influence of the nonlinear effects to the response of the beam. |
en |
heal.journalName |
ECCOMAS Thematic Conference - COMPDYN 2011: 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering: An IACM Special Interest Conference, Programme |
en |