HEAL DSpace

Oil spill thickness estimation using unmixing methods

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sykas, D en
dc.contributor.author Karathanassi, V en
dc.contributor.author Andreou, Ch en
dc.contributor.author Kolokoussis, P en
dc.date.accessioned 2014-03-01T02:53:23Z
dc.date.available 2014-03-01T02:53:23Z
dc.date.issued 2011 en
dc.identifier.issn 21586276 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36288
dc.subject abundance fraction en
dc.subject oil spills en
dc.subject thickness en
dc.subject unmixing methods en
dc.subject.other abundance fraction en
dc.subject.other Artificial image en
dc.subject.other Constrained Energy Minimization en
dc.subject.other Constrained least squares en
dc.subject.other Correlation function en
dc.subject.other Endmembers en
dc.subject.other Hyperspectral Data en
dc.subject.other Image reconstruction techniques en
dc.subject.other Laboratory measurements en
dc.subject.other Logarithmic equations en
dc.subject.other Network-based en
dc.subject.other Orthogonal subspace projection en
dc.subject.other Spectral signature en
dc.subject.other Spectral unmixing en
dc.subject.other thickness en
dc.subject.other Thickness estimation en
dc.subject.other Unmixing en
dc.subject.other Water surface en
dc.subject.other Estimation en
dc.subject.other Fluorine en
dc.subject.other Image reconstruction en
dc.subject.other Oil spills en
dc.subject.other Remote sensing en
dc.subject.other Signal processing en
dc.subject.other Thickness measurement en
dc.subject.other Least squares approximations en
dc.title Oil spill thickness estimation using unmixing methods en
heal.type conferenceItem en
heal.identifier.primary 10.1109/WHISPERS.2011.6080935 en
heal.identifier.secondary 6080935 en
heal.identifier.secondary http://dx.doi.org/10.1109/WHISPERS.2011.6080935 en
heal.publicationDate 2011 en
heal.abstract The paper presents a new method for estimating oil spill thickness using hyperspectral data. The method relies on the abundance fractions provided by spectral unmixing methods. Given that the materials which compose the spectral signature of pixels presenting oil spills are oil and water, correlation functions between abundance fractions of these endmembers and thickness of oil spills were established using artificial images. The artificial images were created using laboratory measurements of oil spills. Thirteen different types of oil were used for the production of the relevant artificial images, each one presenting oil spread on water surface with six different levels of thickness. Unmixing was performed with the Fully constrained Network Based Method (F-NBM), Fully Constrained Least Square method (FCLS), Orthogonal Subspace Projection (OSP) and Constrained Energy Minimization (CEM). The unmixing results were evaluated using image reconstruction techniques. F-NBM produced the most reliable abundances. Logarithmic equations provided the most reliable oil thickness estimations for the examined oil types. Oil thickness can satisfactorily be estimated using the abundance value of water, without requiring the knowledge of the oil type. © 2011 IEEE. en
heal.journalName Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing en
dc.identifier.doi 10.1109/WHISPERS.2011.6080935 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής