dc.contributor.author |
Stefanou, G |
en |
dc.contributor.author |
Pittos, G |
en |
dc.contributor.author |
Papadrakakis, M |
en |
dc.date.accessioned |
2014-03-01T02:53:25Z |
|
dc.date.available |
2014-03-01T02:53:25Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36307 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-84856732585&partnerID=40&md5=bd87a880fb62c9322fdfb8b25512e1ea |
en |
dc.subject.other |
Beam elements |
en |
dc.subject.other |
Coefficient of variation |
en |
dc.subject.other |
Computing power |
en |
dc.subject.other |
Correlation lengths |
en |
dc.subject.other |
Foundation settlement |
en |
dc.subject.other |
Monte Carlo Simulation |
en |
dc.subject.other |
Non-Gaussian |
en |
dc.subject.other |
Parametric investigations |
en |
dc.subject.other |
Pile-settlement |
en |
dc.subject.other |
Plane strain element |
en |
dc.subject.other |
Response variability |
en |
dc.subject.other |
Simulation methods |
en |
dc.subject.other |
Spatial variability |
en |
dc.subject.other |
Statistical characteristics |
en |
dc.subject.other |
Stochastic field |
en |
dc.subject.other |
Stochastic finite elements |
en |
dc.subject.other |
Upper Bound |
en |
dc.subject.other |
Variability response functions |
en |
dc.subject.other |
Civil engineering |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Probability distributions |
en |
dc.subject.other |
Soils |
en |
dc.subject.other |
Stochastic systems |
en |
dc.subject.other |
Piles |
en |
dc.title |
Pile settlement analysis on spatially random soil |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
With the spectacular increase of computing power and the advances in simulation methods, it is nowadays possible to investigate realistic foundation settlement problems in the framework of the Stochastic Finite Element (SFE) method. In this paper, a 2D pile settlement problem is treated considering uncertainty in the stiffness of the soil. The pile is modeled with beam elements while the soil is modeled with four-node quadrilateral plane strain elements. The spatial variability of the elastic modulus of the soil is described by a homogeneous non-Gaussian translation stochastic field with assumed statistical characteristics. The settlement variability is computed using Monte Carlo Simulation (MCS). Parametric investigations are carried out examining the effect of probability distribution, coefficient of variation and correlation length of the stochastic field on the response variability. Spectral-distribution-free upper bounds of the settlement variability are also obtained using a SFE approach based on variability response functions and compared with the results of MCS. © 2011 Taylor & Francis Group, London. |
en |
heal.journalName |
Applications of Statistics and Probability in Civil Engineering -Proceedings of the 11th International Conference on Applications of Statistics and Probability in Civil Engineering |
en |
dc.identifier.spage |
2691 |
en |
dc.identifier.epage |
2696 |
en |