HEAL DSpace

Power, performance and area prediction of 3D ICs during early stage design exploration in 45nm

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Toufexis, F en
dc.contributor.author Papanikolaou, A en
dc.contributor.author Soudris, D en
dc.contributor.author Stamoulis, G en
dc.contributor.author Bantas, S en
dc.date.accessioned 2014-03-01T02:53:26Z
dc.date.available 2014-03-01T02:53:26Z
dc.date.issued 2011 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36312
dc.subject.other 3-D ICs en
dc.subject.other Area prediction en
dc.subject.other Design Exploration en
dc.subject.other Design flows en
dc.subject.other Limiting factors en
dc.subject.other Novel design en
dc.subject.other Optimum system performance en
dc.subject.other Performance prediction en
dc.subject.other Power supply voltage en
dc.subject.other Thermal variation en
dc.subject.other Voltage drop en
dc.subject.other Drops en
dc.subject.other Forecasting en
dc.subject.other Three dimensional en
dc.subject.other Design en
dc.title Power, performance and area prediction of 3D ICs during early stage design exploration in 45nm en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICECS.2011.6122374 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICECS.2011.6122374 en
heal.identifier.secondary 6122374 en
heal.publicationDate 2011 en
heal.abstract In this work, the impact of across-chip temperature and power supply voltage variations, on performance predictions in 3D ICs, is investigated. To make this possible, a novel design flow is proposed to perform design exploration of 3D ICs. Power supply voltage and thermal variations are modeled, to allow accurate PPA (power, performance and area) predictions. Using the main parts of this design flow, in a system comprising hundreds of million gates, complicated mechanisms are shown to determine the performance of the system. With increasing number of dies, timing is shown to exhibit 4 distinct regions, where either temperature or voltage drop is the dominant limiting factor. Power consumption does not scale monotonically with increasing die number. As a consequence, optimum system performance is in no way achieved by minimizing temperature and voltage drop, as is assumed in the literature so far. The across-chip temperature and power supply voltage variations are finally shown to cause on average 40% increase in timing and 53% decrease in power consumption, compared to the assumption of nominal conditions. © 2011 IEEE. en
heal.journalName 2011 18th IEEE International Conference on Electronics, Circuits, and Systems, ICECS 2011 en
dc.identifier.doi 10.1109/ICECS.2011.6122374 en
dc.identifier.spage 715 en
dc.identifier.epage 718 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής