HEAL DSpace

QoS-oriented service management in clouds for large scale industrial activity recognition

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Voulodimos, AS en
dc.contributor.author Kyriazis, DP en
dc.contributor.author Gogouvitis, SV en
dc.contributor.author Doulamis, AD en
dc.contributor.author Kosmopoulos, DI en
dc.contributor.author Varvarigou, TA en
dc.date.accessioned 2014-03-01T02:53:26Z
dc.date.available 2014-03-01T02:53:26Z
dc.date.issued 2011 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36319
dc.subject activity recognition en
dc.subject cloud infrastructure en
dc.subject industrial workflows en
dc.subject QoS en
dc.subject service management en
dc.subject.other Activity recognition en
dc.subject.other Decentralized approach en
dc.subject.other Industrial activities en
dc.subject.other Industrial enterprise en
dc.subject.other Industrial environments en
dc.subject.other Interactivity en
dc.subject.other Machine-learning en
dc.subject.other Multiple cameras en
dc.subject.other Real time performance en
dc.subject.other Recognition rates en
dc.subject.other Resource limitations en
dc.subject.other Safety guarantees en
dc.subject.other Service management en
dc.subject.other Service-based en
dc.subject.other Time series classifications en
dc.subject.other Training sets en
dc.subject.other Work-flows en
dc.subject.other Accident prevention en
dc.subject.other Computer vision en
dc.subject.other Industry en
dc.subject.other Quality of service en
dc.subject.other Soft computing en
dc.subject.other Time series en
dc.subject.other Cloud computing en
dc.title QoS-oriented service management in clouds for large scale industrial activity recognition en
heal.type conferenceItem en
heal.identifier.primary 10.1109/SoCPaR.2011.6089156 en
heal.identifier.secondary http://dx.doi.org/10.1109/SoCPaR.2011.6089156 en
heal.identifier.secondary 6089156 en
heal.publicationDate 2011 en
heal.abstract Motivated by the need of industrial enterprises for supervision services for quality, security and safety guarantee, we have developed an Activity Recognition Framework based on computer vision and machine learning tools, attaining good recognition rates. However, the deployment of multiple cameras to exploit redundancies, the large training set requirements of our time series classification models, as well as general resource limitations together with the emphasis on real-time performance, pose significant challenges and lead us to consider a decentralized approach. We thus adapt our application to a new and innovative real-time enabled framework for service-based infrastructures, which has developed QoS-oriented Service Management mechanisms in order to allow cloud environments to facilitate real-time and interactivity. Deploying the Activity Recognition Framework in a cloud infrastructure can therefore enable it for large scale industrial environments. © 2011 IEEE. en
heal.journalName Proceedings of the 2011 International Conference of Soft Computing and Pattern Recognition, SoCPaR 2011 en
dc.identifier.doi 10.1109/SoCPaR.2011.6089156 en
dc.identifier.spage 556 en
dc.identifier.epage 560 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής