dc.contributor.author |
Voulodimos, AS |
en |
dc.contributor.author |
Kyriazis, DP |
en |
dc.contributor.author |
Gogouvitis, SV |
en |
dc.contributor.author |
Doulamis, AD |
en |
dc.contributor.author |
Kosmopoulos, DI |
en |
dc.contributor.author |
Varvarigou, TA |
en |
dc.date.accessioned |
2014-03-01T02:53:26Z |
|
dc.date.available |
2014-03-01T02:53:26Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36319 |
|
dc.subject |
activity recognition |
en |
dc.subject |
cloud infrastructure |
en |
dc.subject |
industrial workflows |
en |
dc.subject |
QoS |
en |
dc.subject |
service management |
en |
dc.subject.other |
Activity recognition |
en |
dc.subject.other |
Decentralized approach |
en |
dc.subject.other |
Industrial activities |
en |
dc.subject.other |
Industrial enterprise |
en |
dc.subject.other |
Industrial environments |
en |
dc.subject.other |
Interactivity |
en |
dc.subject.other |
Machine-learning |
en |
dc.subject.other |
Multiple cameras |
en |
dc.subject.other |
Real time performance |
en |
dc.subject.other |
Recognition rates |
en |
dc.subject.other |
Resource limitations |
en |
dc.subject.other |
Safety guarantees |
en |
dc.subject.other |
Service management |
en |
dc.subject.other |
Service-based |
en |
dc.subject.other |
Time series classifications |
en |
dc.subject.other |
Training sets |
en |
dc.subject.other |
Work-flows |
en |
dc.subject.other |
Accident prevention |
en |
dc.subject.other |
Computer vision |
en |
dc.subject.other |
Industry |
en |
dc.subject.other |
Quality of service |
en |
dc.subject.other |
Soft computing |
en |
dc.subject.other |
Time series |
en |
dc.subject.other |
Cloud computing |
en |
dc.title |
QoS-oriented service management in clouds for large scale industrial activity recognition |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/SoCPaR.2011.6089156 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/SoCPaR.2011.6089156 |
en |
heal.identifier.secondary |
6089156 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Motivated by the need of industrial enterprises for supervision services for quality, security and safety guarantee, we have developed an Activity Recognition Framework based on computer vision and machine learning tools, attaining good recognition rates. However, the deployment of multiple cameras to exploit redundancies, the large training set requirements of our time series classification models, as well as general resource limitations together with the emphasis on real-time performance, pose significant challenges and lead us to consider a decentralized approach. We thus adapt our application to a new and innovative real-time enabled framework for service-based infrastructures, which has developed QoS-oriented Service Management mechanisms in order to allow cloud environments to facilitate real-time and interactivity. Deploying the Activity Recognition Framework in a cloud infrastructure can therefore enable it for large scale industrial environments. © 2011 IEEE. |
en |
heal.journalName |
Proceedings of the 2011 International Conference of Soft Computing and Pattern Recognition, SoCPaR 2011 |
en |
dc.identifier.doi |
10.1109/SoCPaR.2011.6089156 |
en |
dc.identifier.spage |
556 |
en |
dc.identifier.epage |
560 |
en |