HEAL DSpace

Reliable modelling and optimisation control of reactive polymer composite moulding processes using bootstrap aggregated neural network models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Zhang, J en
dc.contributor.author Pantelelis, NG en
dc.date.accessioned 2014-03-01T02:53:27Z
dc.date.available 2014-03-01T02:53:27Z
dc.date.issued 2011 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36325
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-84862211644&partnerID=40&md5=c8767588241fe24416e2de77698dce23 en
dc.subject Bootstrap re-sampling en
dc.subject Modelling en
dc.subject Neural networks en
dc.subject Optimisation en
dc.subject Polymer composite moulding en
dc.subject.other Bootstrap resampling en
dc.subject.other Control strategies en
dc.subject.other Degree of cure en
dc.subject.other Dynamic neural networks en
dc.subject.other Generalisation en
dc.subject.other Industrial processs en
dc.subject.other Model prediction en
dc.subject.other Modelling en
dc.subject.other Modelling and optimisation en
dc.subject.other Moulding process en
dc.subject.other Multiple neural networks en
dc.subject.other Neural network model en
dc.subject.other Objective functions en
dc.subject.other Operational data en
dc.subject.other Optimal controls en
dc.subject.other Optimal heating en
dc.subject.other Optimisations en
dc.subject.other Polymer composite en
dc.subject.other Process operation en
dc.subject.other Static and dynamic en
dc.subject.other Training data en
dc.subject.other Composite materials en
dc.subject.other Curing en
dc.subject.other Forecasting en
dc.subject.other Molding en
dc.subject.other Neural networks en
dc.subject.other Optimization en
dc.subject.other Polymers en
dc.subject.other Aggregates en
dc.title Reliable modelling and optimisation control of reactive polymer composite moulding processes using bootstrap aggregated neural network models en
heal.type conferenceItem en
heal.publicationDate 2011 en
heal.abstract This paper presents using bootstrap aggregated neural networks for the modelling and optimisation control of reactive polymer composite moulding processes. Bootstrap aggregated neural networks combine multiple neural networks developed from bootstrap re-sampling replications of the original training data in order to enhance model prediction and generalisation capability. Neural network models for modelling the degree of cure (through modelling the measured resistance) are developed from real industrial process operational data. Both static and dynamic models are developed and the developed neural network models are validated on unseen process operation data. The bootstrap aggregated neural network models give accurate and reliable predictions than single neural networks. Optimal heating profile is obtained by solving an optimisation problem using the dynamic neural network model. The model prediction confidence bound is incorporated in the optimisation objective function in order to enhance the reliability of the calculated optimal control profile. In addition to maximise the final degree of cure, model prediction confidence bound is minimised. Application results on a simulated polymer composite moulding process demonstrate that the proposed reliable optimisation control strategy is effective. en
heal.journalName NCTA 2011 - Proceedings of the International Conference on Neural Computation Theory and Applications en
dc.identifier.spage 236 en
dc.identifier.epage 241 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής