HEAL DSpace

Revealing cluster formation over huge volatile robotic data

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mitsou, N en
dc.contributor.author Ntoutsi, I en
dc.contributor.author Wollherr, D en
dc.contributor.author Tzafestas, C en
dc.contributor.author Kriegel, H-P en
dc.date.accessioned 2014-03-01T02:53:27Z
dc.date.available 2014-03-01T02:53:27Z
dc.date.issued 2011 en
dc.identifier.issn 15504786 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36327
dc.subject Cluster formation en
dc.subject Grid clustering en
dc.subject Robot data en
dc.subject Sensor data en
dc.subject Stream clustering en
dc.subject.other Cluster formations en
dc.subject.other Detecting objects en
dc.subject.other Field methods en
dc.subject.other Grid clustering en
dc.subject.other Grid structures en
dc.subject.other Grid-based algorithms en
dc.subject.other Partial observation en
dc.subject.other Sensor data en
dc.subject.other Stream clustering en
dc.subject.other Time points en
dc.subject.other Unknown environments en
dc.subject.other Data mining en
dc.subject.other Robots en
dc.subject.other Sensors en
dc.subject.other Robotics en
dc.title Revealing cluster formation over huge volatile robotic data en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICDMW.2011.147 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICDMW.2011.147 en
heal.identifier.secondary 6137414 en
heal.publicationDate 2011 en
heal.abstract In this paper, we propose a driven by the robotics field method for revealing global clusters over a fast, huge and volatile stream of robotic data. The stream comes from a mobile robot which autonomously navigates in an unknown environment perceiving it through its sensors. The sensor data arrives fast, is huge and evolves quickly over time as the robot explores the environment and observes new objects or new parts of already observed objects. To deal with the nature of data, we propose a grid-based algorithm that updates the grid structure and adjusts the so far built clusters online. Our method is capable of detecting object formations over time based on the partial observations of the robot at each time point. Experiments on real data verify the usefulness and efficiency of our method. © 2011 IEEE. en
heal.journalName Proceedings - IEEE International Conference on Data Mining, ICDM en
dc.identifier.doi 10.1109/ICDMW.2011.147 en
dc.identifier.spage 450 en
dc.identifier.epage 457 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής