dc.contributor.author |
Kalantidis, Y |
en |
dc.contributor.author |
Pueyo, LG |
en |
dc.contributor.author |
Trevisiol, M |
en |
dc.contributor.author |
Van Zwol, R |
en |
dc.contributor.author |
Avrithis, Y |
en |
dc.date.accessioned |
2014-03-01T02:53:27Z |
|
dc.date.available |
2014-03-01T02:53:27Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36330 |
|
dc.subject.other |
Bag of words |
en |
dc.subject.other |
Class models |
en |
dc.subject.other |
Data sets |
en |
dc.subject.other |
Delaunay triangulation |
en |
dc.subject.other |
Indexing process |
en |
dc.subject.other |
Inverted index structures |
en |
dc.subject.other |
Local geometry |
en |
dc.subject.other |
Logo recognition |
en |
dc.subject.other |
Multiscales |
en |
dc.subject.other |
Query images |
en |
dc.subject.other |
Search problem |
en |
dc.subject.other |
Triangulation-based |
en |
dc.subject.other |
Visual appearance |
en |
dc.subject.other |
Data processing |
en |
dc.subject.other |
Visualization |
en |
dc.subject.other |
Triangulation |
en |
dc.title |
Scalable triangulation-based logo recognition |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1145/1991996.1992016 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/1991996.1992016 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
We propose a scalable logo recognition approach that extends the common bag-of-words model and incorporates local geometry in the indexing process. Given a query image and a large logo database, the goal is to recognize the logo contained in the query, if any. We locally group features in triples using multi-scale Delaunay triangulation and represent triangles by signatures capturing both visual appearance and local geometry. Each class is represented by the union of such signatures over all instances in the class. We see large scale recognition as a sub-linear search problem where signatures of the query image are looked up in an inverted index structure of the class models. We evaluate our approach on a large-scale logo recognition dataset with more than four thousand classes. © 2011 ACM. |
en |
heal.journalName |
Proceedings of the 1st ACM International Conference on Multimedia Retrieval, ICMR'11 |
en |
dc.identifier.doi |
10.1145/1991996.1992016 |
en |