dc.contributor.author |
Giannelos, C |
en |
dc.contributor.author |
Vamvatsikos, D |
en |
dc.date.accessioned |
2014-03-01T02:53:28Z |
|
dc.date.available |
2014-03-01T02:53:28Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36343 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-80054795611&partnerID=40&md5=bdc95f80a0d0ee62a36edbc6ed4c22c8 |
en |
dc.subject |
Bridges |
en |
dc.subject |
Corrosion |
en |
dc.subject |
Equivalent single-degree-of-freedom model |
en |
dc.subject |
Incremental dynamic analysis |
en |
dc.subject |
Performance-based earth-quake engineering |
en |
dc.subject |
Reinforced concrete |
en |
dc.subject |
Static pushover analysis |
en |
dc.subject.other |
Assesment |
en |
dc.subject.other |
Capacity curves |
en |
dc.subject.other |
Chloride ions |
en |
dc.subject.other |
Complex model |
en |
dc.subject.other |
Complex problems |
en |
dc.subject.other |
Comprehensive evaluation |
en |
dc.subject.other |
Computational costs |
en |
dc.subject.other |
Computational loads |
en |
dc.subject.other |
Corrosion effects |
en |
dc.subject.other |
Corrosion process |
en |
dc.subject.other |
Design life |
en |
dc.subject.other |
Epistemic uncertainties |
en |
dc.subject.other |
Incremental dynamic analysis |
en |
dc.subject.other |
Monte Carlo Simulation |
en |
dc.subject.other |
Non-linear dynamic analysis |
en |
dc.subject.other |
Performance-based earth-quake engineering |
en |
dc.subject.other |
Probabilistic models |
en |
dc.subject.other |
Reinforcement corrosion |
en |
dc.subject.other |
Reinforcement steels |
en |
dc.subject.other |
SDOF system |
en |
dc.subject.other |
Seismic demand and capacity |
en |
dc.subject.other |
Seismic Performance |
en |
dc.subject.other |
Single-degree-of-freedom |
en |
dc.subject.other |
Static pushover analysis |
en |
dc.subject.other |
Strength degradation |
en |
dc.subject.other |
Time moments |
en |
dc.subject.other |
Bridges |
en |
dc.subject.other |
Chlorine compounds |
en |
dc.subject.other |
Civil engineering |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Corrosion |
en |
dc.subject.other |
Design |
en |
dc.subject.other |
Dynamic analysis |
en |
dc.subject.other |
Earthquakes |
en |
dc.subject.other |
Engineering geology |
en |
dc.subject.other |
Highway bridges |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Piers |
en |
dc.subject.other |
Reinforced concrete |
en |
dc.subject.other |
Reinforcement |
en |
dc.subject.other |
Seismic waves |
en |
dc.subject.other |
Structural dynamics |
en |
dc.subject.other |
Uncertainty analysis |
en |
dc.subject.other |
Seismic design |
en |
dc.title |
Simplified seismic performance assesment over the lifetime of a highway bridge subject to pier reinforcement corrosion |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The lifetime seismic performance of a typical segmental three-span (75+120+75) Egnatia Odos Highway bridge is assessed, considering the corrosive action of chloride ions that leads to pier strength degradation over time. The aim is to show the influence of corrosion on the seismic demand and capacity over the entire design life of the bridge, as well as the usefulness of simplified single-degree-of-freedom (SDOF) models to minimize the computational cost to non-prohibitive levels for contemporary capabilities. Five different time instants are chosen within the 120 year design life of the bridge. For each instant, the piers' reinforcement steel loss is calculated via a probabilistic model using Monte Carlo simulation to account for the uncertainty in the factors that affect the corrosion. While incremental dynamic analysis (IDA) of the complex model would be the method of choice for a comprehensive evaluation, we employ instead approximate IDA of equivalent SDOF systems with capacity curves derived by static pushover analysis. Such analyses are efficiently executed for different time moments of the design life of the bridge, taking into account the active pier re-bar diameter due to corrosion effects. Thus, the usefulness of the equivalent SDOF system concept combined with nonlinear dynamic analysis or a powerful R-μ-T relationship such as SPO2IDA is shown. This usefulness turns to a necessity when more factors of epistemic uncertainty beyond the corrosion process are added in this already complex problem, disproportionately magnifying the required computational load. |
en |
heal.journalName |
ECCOMAS Thematic Conference - COMPDYN 2011: 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering: An IACM Special Interest Conference, Programme |
en |