dc.contributor.author |
Tolias, G |
en |
dc.contributor.author |
Avrithis, Y |
en |
dc.date.accessioned |
2014-03-01T02:53:28Z |
|
dc.date.available |
2014-03-01T02:53:28Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36348 |
|
dc.subject.other |
Descriptors |
en |
dc.subject.other |
Feature correspondence |
en |
dc.subject.other |
Geometric invariance |
en |
dc.subject.other |
Matching process |
en |
dc.subject.other |
Multiple matching |
en |
dc.subject.other |
Non-rigid objects |
en |
dc.subject.other |
One-to-one mappings |
en |
dc.subject.other |
Re-ranking |
en |
dc.subject.other |
Rigidity constraint |
en |
dc.subject.other |
Space requirements |
en |
dc.subject.other |
Spatial matching |
en |
dc.subject.other |
State of the art |
en |
dc.subject.other |
Image retrieval |
en |
dc.subject.other |
Search engines |
en |
dc.subject.other |
Image processing |
en |
dc.title |
Speeded-up, relaxed spatial matching |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICCV.2011.6126427 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICCV.2011.6126427 |
en |
heal.identifier.secondary |
6126427 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
A wide range of properties and assumptions determine the most appropriate spatial matching model for an application, e.g. recognition, detection, registration, or large scale image retrieval. Most notably, these include discriminative power, geometric invariance, rigidity constraints, mapping constraints, assumptions made on the underlying features or descriptors and, of course, computational complexity. Having image retrieval in mind, we present a very simple model inspired by Hough voting in the transformation space, where votes arise from single feature correspondences. A relaxed matching process allows for multiple matching surfaces or non-rigid objects under one-to-one mapping, yet is linear in the number of correspondences. We apply it to geometry re-ranking in a search engine, yielding superior performance with the same space requirements but a dramatic speed-up compared to the state of the art. © 2011 IEEE. |
en |
heal.journalName |
Proceedings of the IEEE International Conference on Computer Vision |
en |
dc.identifier.doi |
10.1109/ICCV.2011.6126427 |
en |
dc.identifier.spage |
1653 |
en |
dc.identifier.epage |
1660 |
en |