HEAL DSpace

The medial feature detector: Stable regions from image boundaries

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Avrithis, Y en
dc.contributor.author Rapantzikos, K en
dc.date.accessioned 2014-03-01T02:53:30Z
dc.date.available 2014-03-01T02:53:30Z
dc.date.issued 2011 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36362
dc.subject.other Computational requirements en
dc.subject.other Duality properties en
dc.subject.other Euclidean spaces en
dc.subject.other Feature detector en
dc.subject.other Group marching en
dc.subject.other Image boundaries en
dc.subject.other Image gradients en
dc.subject.other Image Structures en
dc.subject.other Linear-time algorithms en
dc.subject.other Local feature detectors en
dc.subject.other Marching method en
dc.subject.other Medial axis en
dc.subject.other Reduced memory en
dc.subject.other Saddle point en
dc.subject.other Scale spaces en
dc.subject.other Stable region en
dc.subject.other State-of-the-art performance en
dc.subject.other Voronoi en
dc.subject.other Weighted distance en
dc.subject.other Clustering algorithms en
dc.subject.other Image processing en
dc.subject.other Feature extraction en
dc.title The medial feature detector: Stable regions from image boundaries en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICCV.2011.6126436 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICCV.2011.6126436 en
heal.identifier.secondary 6126436 en
heal.publicationDate 2011 en
heal.abstract We present a local feature detector that is able to detect regions of arbitrary scale and shape, without scale space construction. We compute a weighted distance map on image gradient, using our exact linear-time algorithm, a variant of group marching for Euclidean space. We find the weighted medial axis by extending residues, typically used in Voronoi skeletons. We decompose the medial axis into a graph representing image structure in terms of peaks and saddle points. A duality property enables reconstruction of regions using the same marching method. We greedily group regions taking both contrast and shape into account. On the way, we select regions according to our shape fragmentation factor, favoring those well enclosed by boundaries-even incomplete. We achieve state of the art performance in matching and retrieval experiments with reduced memory and computational requirements. © 2011 IEEE. en
heal.journalName Proceedings of the IEEE International Conference on Computer Vision en
dc.identifier.doi 10.1109/ICCV.2011.6126436 en
dc.identifier.spage 1724 en
dc.identifier.epage 1731 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής