dc.contributor.author |
Orfanos, GA |
en |
dc.contributor.author |
Georgilakis, PS |
en |
dc.contributor.author |
Korres, GN |
en |
dc.contributor.author |
Hatziargyriou, ND |
en |
dc.date.accessioned |
2014-03-01T02:53:31Z |
|
dc.date.available |
2014-03-01T02:53:31Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36374 |
|
dc.subject |
Differential evolution |
en |
dc.subject |
electricity markets |
en |
dc.subject |
evolutionary optimization algorithms |
en |
dc.subject |
power systems |
en |
dc.subject |
reference network |
en |
dc.subject |
transmission expansion planning |
en |
dc.subject.other |
Differential Evolution |
en |
dc.subject.other |
electricity markets |
en |
dc.subject.other |
Evolutionary optimization algorithm |
en |
dc.subject.other |
Reference network |
en |
dc.subject.other |
transmission expansion planning |
en |
dc.subject.other |
Commerce |
en |
dc.subject.other |
Deregulation |
en |
dc.subject.other |
Evolutionary algorithms |
en |
dc.subject.other |
Expansion |
en |
dc.subject.other |
Intelligent systems |
en |
dc.subject.other |
Power transmission |
en |
dc.subject.other |
Standby power systems |
en |
dc.subject.other |
Thermoelectric power |
en |
dc.subject.other |
Electric power transmission |
en |
dc.title |
Transmission expansion planning by enhanced differential evolution |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ISAP.2011.6082249 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ISAP.2011.6082249 |
en |
heal.identifier.secondary |
6082249 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The restructuring and deregulation has exposed the transmission planner to new objectives and uncertainties. As a result, new criteria and approaches are needed for transmission expansion planning (TEP) in deregulated electricity markets. This paper proposes a new market-based approach for TEP. An enhanced differential evolution (EDE) model is proposed for the solution of this new market-based TEP problem. The modifications of EDE in comparison to the simple differential evolution method are: 1) the scaling factor F is varied randomly within some range, 2) an auxiliary set is employed to enhance the diversity of the population, 3) the newly generated trial vector is compared with the nearest parent, and 4) the simple feasibility rule is used to treat the constraints. Results from the application of the proposed method on the IEEE 30 bus test system demonstrate the feasibility and practicality of the proposed EDE for the solution of TEP problem. © 2011 IEEE. |
en |
heal.journalName |
2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011 |
en |
dc.identifier.doi |
10.1109/ISAP.2011.6082249 |
en |