HEAL DSpace

Using principal component analysis for endmember extraction

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Andreou, C en
dc.contributor.author Karathanassi, V en
dc.date.accessioned 2014-03-01T02:53:31Z
dc.date.available 2014-03-01T02:53:31Z
dc.date.issued 2011 en
dc.identifier.issn 21586276 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36379
dc.subject endmember extraction en
dc.subject hyperspectral imaging en
dc.subject principal components en
dc.subject spectral unmixing en
dc.subject.other Dimensionality reduction en
dc.subject.other Endmember extraction en
dc.subject.other Endmember extraction algorithms en
dc.subject.other Endmembers en
dc.subject.other Hyperspectral Data en
dc.subject.other Hyperspectral Imaging en
dc.subject.other Maximum values en
dc.subject.other Minimum value en
dc.subject.other Noise levels en
dc.subject.other Principal Components en
dc.subject.other Simulated images en
dc.subject.other Spectral unmixing en
dc.subject.other Unsupervised endmember extraction en
dc.subject.other Algorithms en
dc.subject.other Remote sensing en
dc.subject.other Signal processing en
dc.subject.other Principal component analysis en
dc.title Using principal component analysis for endmember extraction en
heal.type conferenceItem en
heal.identifier.primary 10.1109/WHISPERS.2011.6080955 en
heal.identifier.secondary http://dx.doi.org/10.1109/WHISPERS.2011.6080955 en
heal.identifier.secondary 6080955 en
heal.publicationDate 2011 en
heal.abstract This paper introduces a new simplex-based unsupervised endmember extraction method from hyperspectral data. The method exploits the dimensionality reduction ability of the principal component analysis, and generalizes the concept that, the first generated endmember by the Simplex Growing Algorithm, is always a pixel which has either a maximum or a minimum value in the first component, to more endmembers and components. According to the method, a subset of the minimum and maximum values of the first p-1 principal components, where p is the number of the endmembers to be defined, corresponds to the vertices of the simplex which is created by the data. In order to evaluate the proposed method, simulated images with different noise levels were created. For comparison purposes, several other known endmember extraction algorithms were applied to the data and compared with the new method. Results present that the proposed method can be promising in the field of endmember extraction. © 2011 IEEE. en
heal.journalName Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing en
dc.identifier.doi 10.1109/WHISPERS.2011.6080955 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής