HEAL DSpace

Video summarization guiding evaluative rectification for industrial activity recognition

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Voulodimos, AS en
dc.contributor.author Doulamis, AD en
dc.contributor.author Kosmopoulos, DI en
dc.contributor.author Varvarigou, TA en
dc.date.accessioned 2014-03-01T02:53:31Z
dc.date.available 2014-03-01T02:53:31Z
dc.date.issued 2011 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36382
dc.subject.other Accuracy rate en
dc.subject.other Activity recognition en
dc.subject.other Classification results en
dc.subject.other Computational costs en
dc.subject.other Data sets en
dc.subject.other Expert users en
dc.subject.other Industrial activities en
dc.subject.other Industrial surveillance en
dc.subject.other Key-frames en
dc.subject.other Representative sample en
dc.subject.other Semantic content en
dc.subject.other Training sample en
dc.subject.other Training sets en
dc.subject.other Video summarization en
dc.subject.other Experiments en
dc.subject.other Image processing en
dc.subject.other Natural language processing systems en
dc.subject.other Sampling en
dc.subject.other Security systems en
dc.subject.other Semantics en
dc.subject.other Video recording en
dc.subject.other Industry en
dc.title Video summarization guiding evaluative rectification for industrial activity recognition en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICCVW.2011.6130354 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICCVW.2011.6130354 en
heal.identifier.secondary 6130354 en
heal.publicationDate 2011 en
heal.abstract In this paper we present a video summarization method that extracts key-frames from industrial surveillance videos, thus dramatically reducing the number of frames without significant loss of semantic content. We propose to use the produced summaries as training set for neural network based Evaluative Rectification. Evaluative Rectification is a method that exploits an expert user's feedback regarding the correctness of an activity recognition framework on part of the data in order to enhance future classification results. The size of the training sample set usually depends on the topology of the network and on the complexity of the environment and activities observed. However, as is shown by the experiments conducted in a real-world industrial activity recognition dataset, using a much smaller but representative sample stemming from our summarization technique leads to significantly higher accuracy rates than those attained by a same size but randomly chosen set. To obtain comparable improvement in accuracy without the summarization technique, the experiments show that a far larger training sample set is needed, therefore requiring significantly increased human resources and computational cost. © 2011 IEEE. en
heal.journalName Proceedings of the IEEE International Conference on Computer Vision en
dc.identifier.doi 10.1109/ICCVW.2011.6130354 en
dc.identifier.spage 950 en
dc.identifier.epage 957 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής