HEAL DSpace

Visual pathways for shape abstraction

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Raftopoulos, KA en
dc.contributor.author Kollias, SD en
dc.date.accessioned 2014-03-01T02:53:31Z
dc.date.available 2014-03-01T02:53:31Z
dc.date.issued 2011 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36384
dc.subject Shape Abstraction en
dc.subject Skeleton Transform en
dc.subject Visual Pathways en
dc.subject.other 2D shape recognition en
dc.subject.other Boundary curvature en
dc.subject.other Boundary information en
dc.subject.other Cortical neurons en
dc.subject.other Local curvature en
dc.subject.other Medial axis transforms en
dc.subject.other Multilayered neural networks en
dc.subject.other Proposed architectures en
dc.subject.other Receptive fields en
dc.subject.other Shape Abstraction en
dc.subject.other Shape representation en
dc.subject.other Skeleton transform en
dc.subject.other State of the art en
dc.subject.other Visual cortexes en
dc.subject.other Visual pathways en
dc.subject.other Abstracting en
dc.subject.other Musculoskeletal system en
dc.subject.other Network layers en
dc.subject.other Vision en
dc.subject.other Neural networks en
dc.title Visual pathways for shape abstraction en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-21735-7_36 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-21735-7_36 en
heal.publicationDate 2011 en
heal.abstract The Medial Axis Transform (MAT) (or skeleton transform) is one of the most studied shape representation techniques with established advantages for general 2D shape recognition. Embedding local boundary information in the skeleton, in particular, has been shown to improve 2D shape recognition capability to state of the art levels. In this paper we present a visual pathway for extracting an analogous to the MAT skeleton abstraction of shape that also contains local boundary curvature information. We refer to this structure with the term curvature-skeleton. The proposed architecture is inspired by the biological findings regarding the cortical neurons of the visual cortex and their special purpose Receptive Fields (RFs). Points of high curvature are initially identified and subsequently combined by means of a visual pathway that achieves an analogous to the MAT abstraction of shape but also embeds in the skeleton local curvature information of the shape's boundary. We present experimental results illustrating that such an abstraction can improve the recognition capability of multi layered neural network classifiers. © 2011 Springer-Verlag. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-21735-7_36 en
dc.identifier.volume 6791 LNCS en
dc.identifier.issue PART 1 en
dc.identifier.spage 291 en
dc.identifier.epage 298 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής