HEAL DSpace

A highly nonlinear boussinesq wave model of improved dispersion characteristics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chondros, MK en
dc.contributor.author Memos, CD en
dc.date.accessioned 2014-03-01T02:53:32Z
dc.date.available 2014-03-01T02:53:32Z
dc.date.issued 2012 en
dc.identifier.issn 10986189 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36395
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-84866130442&partnerID=40&md5=76b4137fe34167053252c0b84ed4ddfc en
dc.subject Boussinesq waves en
dc.subject Linear dispersion en
dc.subject Nonlinear models en
dc.subject Numerical modeling en
dc.subject Wave number en
dc.title A highly nonlinear boussinesq wave model of improved dispersion characteristics en
heal.type conferenceItem en
heal.publicationDate 2012 en
heal.abstract In the present study a modified Boussinesq-type model is derived to account for propagation of regular and irregular waves in two horizontal dimensions. An improvement of the linear and nonlinear characteristics of the model is obtained by optimizing the coefficients of each term in the momentum equation, expanding in this way its applicability in very deep waters and thus overcoming a dominant short-coming of most likewise models. The values of the coefficients were obtained by an inverse method in such a way to satisfy exactly the dispersion relation in terms of both first and second order analyse. The modified model was applied to simulate the propagation of regular and irregular waves in one horizontal dimension, in a variety of bottom profiles, such as constant depth, mild slope, submerged obstacles. The simulations are compared with experimental data and analytical results, indicating very good agreement in most cases. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE). en
heal.journalName Proceedings of the International Offshore and Polar Engineering Conference en
dc.identifier.spage 1179 en
dc.identifier.epage 1185 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής