HEAL DSpace

Affective, natural interaction using EEG: Sensors, application and future directions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Hondrou, C en
dc.contributor.author Caridakis, G en
dc.date.accessioned 2014-03-01T02:53:32Z
dc.date.available 2014-03-01T02:53:32Z
dc.date.issued 2012 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36404
dc.subject Affect aware applications en
dc.subject Affective Computing en
dc.subject EEG en
dc.subject Natural Interaction en
dc.subject.other Affective Computing en
dc.subject.other Application domains en
dc.subject.other Dimensionality reduction en
dc.subject.other EEG signals en
dc.subject.other Emotion representation en
dc.subject.other Induction method en
dc.subject.other Multiple modalities en
dc.subject.other Natural interactions en
dc.subject.other Network communications en
dc.subject.other Physiological signals en
dc.subject.other Technological advancement en
dc.subject.other Technological feature en
dc.subject.other Artificial intelligence en
dc.subject.other Electrophysiology en
dc.subject.other Sensors en
dc.subject.other Electroencephalography en
dc.title Affective, natural interaction using EEG: Sensors, application and future directions en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-30448-4_42 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-30448-4_42 en
heal.publicationDate 2012 en
heal.abstract ElectroEncephaloGraphy signals have been studied in relation to emotion even prior to the establishment of Affective Computing as a research area. Technological advancements in the sensor and network communication technology allowed EEG collection during interaction with low obtrusiveness levels as opposed to earlier work which classified physiological signals as the most obtrusive modality in affective analysis. The current article provides a critical survey of research work dealing with broadly affective analysis of EEG signals collected during natural or naturalistic interaction. It focuses on sensors that allow such natural interaction (namely NeuroSky and Emotiv), related technological features and affective aspects of applications in several application domains. These aspects include emotion representation approach, induction method and stimuli and annotation chosen for the application. Additionally, machine learning issues related to affective analysis (such as incorporation of multiple modalities and related issues, feature selection for dimensionality reduction and classification architectures) are revised. Finally, future directions of EEG incorporation in affective and natural interaction are discussed. © 2012 Springer-Verlag. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-30448-4_42 en
dc.identifier.volume 7297 LNCS en
dc.identifier.spage 331 en
dc.identifier.epage 338 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής