dc.contributor.author |
Belenky, V |
en |
dc.contributor.author |
Weems, KM |
en |
dc.contributor.author |
Bassler, CC |
en |
dc.contributor.author |
Dipper, MJ |
en |
dc.contributor.author |
Campbell, BL |
en |
dc.contributor.author |
Spyrou, KJ |
en |
dc.date.accessioned |
2014-03-01T02:53:33Z |
|
dc.date.available |
2014-03-01T02:53:33Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
02668920 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36411 |
|
dc.subject |
Monte Carlo method |
en |
dc.subject |
Rare events |
en |
dc.subject |
Stability of ship in waves |
en |
dc.subject.other |
Empirical model |
en |
dc.subject.other |
Engineering evaluations |
en |
dc.subject.other |
Extreme response |
en |
dc.subject.other |
Flow forces |
en |
dc.subject.other |
Flow hydrodynamics |
en |
dc.subject.other |
High costs |
en |
dc.subject.other |
Model experiments |
en |
dc.subject.other |
Monte Carlo approach |
en |
dc.subject.other |
Non-linear phenomena |
en |
dc.subject.other |
Peaks-over-threshold method |
en |
dc.subject.other |
Practical solutions |
en |
dc.subject.other |
Random waves |
en |
dc.subject.other |
Rare event |
en |
dc.subject.other |
Ship designs |
en |
dc.subject.other |
Ship motion |
en |
dc.subject.other |
Stochastic dynamics |
en |
dc.subject.other |
Wave group |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Dynamical systems |
en |
dc.subject.other |
Integrodifferential equations |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Potential flow |
en |
dc.subject.other |
Ships |
en |
dc.title |
Approaches to rare events in stochastic dynamics of ships |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1016/j.probengmech.2011.08.020 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.probengmech.2011.08.020 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
The paper reviews problems and solutions related to extreme ship motions in random waves. In its general form, the dynamical system is described by integro-differential equations. The bandwidth of excitation is medium; stiffness is extremely nonlinear and random. In standard ship design, the main tools for the engineering evaluation are model experiments and numerical simulations using potential flow hydrodynamics with empirical models for non-potential flow forces. However, a direct Monte Carlo approach is impractical because of the high cost of running these tools and the rarity of extreme motion events. To obtain a practical solution, the principle of separation can be used to effectively consider the nonlinear phenomena resulting in an extreme response and the conditions that lead to the occurrence of such phenomena. This paper discusses fundamental aspects of three methods that use the principle of separation: the peaks-over-threshold/envelope peaks-over-threshold method, the split-time method, and the critical wave group method. © 2011 Elsevier Ltd. All rights reserved. |
en |
heal.journalName |
Probabilistic Engineering Mechanics |
en |
dc.identifier.doi |
10.1016/j.probengmech.2011.08.020 |
en |
dc.identifier.volume |
28 |
en |
dc.identifier.spage |
30 |
en |
dc.identifier.epage |
38 |
en |