HEAL DSpace

Automatic scaling of selective SPARQL joins using the TIRAMOLA system

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Angelou, E en
dc.contributor.author Papailiou, N en
dc.contributor.author Konstantinou, I en
dc.contributor.author Tsoumakos, D en
dc.contributor.author Koziris, N en
dc.date.accessioned 2014-03-01T02:53:33Z
dc.date.available 2014-03-01T02:53:33Z
dc.date.issued 2012 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36415
dc.subject.other Automatic scaling en
dc.subject.other Commodity hardware en
dc.subject.other Large-scale datasets en
dc.subject.other Rdf stores en
dc.subject.other System administrators en
dc.subject.other Throughput maximization en
dc.subject.other Virtual hardware en
dc.subject.other Elasticity en
dc.subject.other Hardware en
dc.subject.other Information management en
dc.subject.other Quality of service en
dc.subject.other Database systems en
dc.title Automatic scaling of selective SPARQL joins using the TIRAMOLA system en
heal.type conferenceItem en
heal.identifier.primary 10.1145/2237867.2237868 en
heal.identifier.secondary http://dx.doi.org/10.1145/2237867.2237868 en
heal.publicationDate 2012 en
heal.abstract Modern cloud infrastructures based on virtual hardware provide new opportunities and challenges for developers and system administrators alike. Most notable is the promise of resource elasticity, whereby the infrastructure can increase or decrease in size based on demand. Utilizing elastic resources, applications can provide better quality of service and reduce cost by only paying for the required amount of resources. In this work, we extensively study the performance of some popular NoSQL databases over an elastic cloud infrastructure. NoSQL databases focus on analytical processing of large scale datasets, offering increased scalability over commodity hardware. We then proceed to describe TIRAMOLA, a cloud-enabled framework for automatic provisioning of elastic resources on any NoSQL platform. Our system administers cluster resources (VMs) according to user-or application-specified constraints through an expandable monitoring and command-issuing module. Users can easily modify resizing policies, based on application-specific metrics and thus fully utilize the elasticity of the underlying infrastructure. As a realistic use-case, we apply this framework on top of a fully distributed RDF store backed by an elastic NoSQL database. Letting TIRAMOLA manage the number of committed resources results in automated cluster resize actions and throughput maximization, while application experts need only provide simple elasticity rules. © 2012 ACM. en
heal.journalName Proceedings of the 4th International Workshop on Semantic Web Information Management, SWIM'12 en
dc.identifier.doi 10.1145/2237867.2237868 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής