HEAL DSpace

Block operator context scanning for commercial tracking

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Giannoukos, I en
dc.contributor.author Vrachnakis, V en
dc.contributor.author Anagnostopoulos, C-N en
dc.contributor.author Anagnostopoulos, I en
dc.contributor.author Loumos, V en
dc.date.accessioned 2014-03-01T02:53:33Z
dc.date.available 2014-03-01T02:53:33Z
dc.date.issued 2012 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36418
dc.subject Block-Operator Context Scanning en
dc.subject Commercial Tracking en
dc.subject Sliding Windows en
dc.subject Video Matching en
dc.subject.other Coarse-to-fine strategy en
dc.subject.other Image sequence en
dc.subject.other Market analysis en
dc.subject.other Processing method en
dc.subject.other Regions of interest en
dc.subject.other Sliding Window en
dc.subject.other Speed increase en
dc.subject.other Television channel en
dc.subject.other Time sliding windows en
dc.subject.other Tracker system en
dc.subject.other Video matching en
dc.subject.other Algorithms en
dc.subject.other Artificial intelligence en
dc.subject.other Scanning en
dc.title Block operator context scanning for commercial tracking en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-30448-4_47 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-30448-4_47 en
heal.publicationDate 2012 en
heal.abstract The industry that designs and promotes advertising products in television channels is constantly growing. For effective market analysis and contract validation, various commercial tracker systems are employed. However, these systems mostly rely on heuristics and, since commercial broadcasting varies significantly, are often inaccurate. This paper proposes a commercial tracker system based on the Block Operator Context Scanning (Block - OCS) algorithm, which is both accurate and fast. The proposed method, similar to coarse-to-fine strategies, skips a large portion of the image sequences by focusing only on Regions of Interest. In this paper, a video matching algorithm is also proposed, which compares image sequences using time sliding windows of frames. Experimental results showed 100% accuracy and 50% speed increase compared to traditional block-based processing methods. © 2012 Springer-Verlag. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-30448-4_47 en
dc.identifier.volume 7297 LNCS en
dc.identifier.spage 369 en
dc.identifier.epage 374 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής