dc.contributor.author |
Chryssoverghi, I |
en |
dc.contributor.author |
Coletsos, J |
en |
dc.contributor.author |
Kokkinis, B |
en |
dc.date.accessioned |
2014-03-01T02:53:34Z |
|
dc.date.available |
2014-03-01T02:53:34Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36421 |
|
dc.subject.other |
Classical control |
en |
dc.subject.other |
Classical solutions |
en |
dc.subject.other |
Computational costs |
en |
dc.subject.other |
Descent method |
en |
dc.subject.other |
Discretizations |
en |
dc.subject.other |
Gradient projection methods |
en |
dc.subject.other |
Nonlinear ordinary differential equation |
en |
dc.subject.other |
Numerical example |
en |
dc.subject.other |
Optimal control problem |
en |
dc.subject.other |
Optimality |
en |
dc.subject.other |
Pointwise state constraints |
en |
dc.subject.other |
Relaxed control |
en |
dc.subject.other |
Computational efficiency |
en |
dc.subject.other |
Optimal control systems |
en |
dc.subject.other |
Refining |
en |
dc.subject.other |
Ordinary differential equations |
en |
dc.title |
Classical and relaxed progressively refining discretization-optimization methods for optimal control problems defined by ordinary differential equations |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-29843-1_11 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-29843-1_11 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
An optimal control problem is considered, for systems defined by nonlinear ordinary differential equations, with control and pointwise state constraints. Since the problem may have no classical solutions, it is also formulated in the relaxed form. Various necessary/sufficient conditions for optimality are first given for both formulations. In order to solve these problems numerically, we then propose a discrete penalized gradient projection method generating classical controls, and a discrete penalised conditional descent method generating relaxed controls. In both methods, the discretization procedure is progressively refining in order to achieve efficiency with reduced computational cost. Results are given concerning the behaviour in the limit of these methods. Finally, numerical examples are provided. © 2012 Springer-Verlag. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-29843-1_11 |
en |
dc.identifier.volume |
7116 LNCS |
en |
dc.identifier.spage |
106 |
en |
dc.identifier.epage |
114 |
en |