HEAL DSpace

Client- and server-side revisitation prediction with SUPRA

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadakis, G en
dc.contributor.author Kawase, R en
dc.contributor.author Herder, E en
dc.date.accessioned 2014-03-01T02:53:34Z
dc.date.available 2014-03-01T02:53:34Z
dc.date.issued 2012 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36423
dc.subject Contextual support en
dc.subject Revisitation prediction en
dc.subject Web behavior en
dc.subject.other Client-side application en
dc.subject.other Collaborative application en
dc.subject.other Contextual information en
dc.subject.other Contextual support en
dc.subject.other Generic frameworks en
dc.subject.other Real-world datasets en
dc.subject.other Revisitation en
dc.subject.other Training data en
dc.subject.other Web behavior en
dc.subject.other Data processing en
dc.subject.other Learning algorithms en
dc.subject.other Semantic Web en
dc.subject.other Semantics en
dc.subject.other Forecasting en
dc.title Client- and server-side revisitation prediction with SUPRA en
heal.type conferenceItem en
heal.identifier.primary 10.1145/2254129.2254149 en
heal.identifier.secondary http://dx.doi.org/10.1145/2254129.2254149 en
heal.identifier.secondary 14 en
heal.publicationDate 2012 en
heal.abstract Users of collaborative applications as well as individual users in their private environment return to previously visited Web pages for various reasons; apart from pages visited due to backtracking, they typically have a number of favorite or important pages that they monitor or tasks that reoccur on an infrequent basis. In this paper, we introduce a library of methods that facilitate revisitation through the effective prediction of the next page request. It is based on a generic framework that inherently incorporates contextual information, handling uniformly both server- and the client-side applications. Unlike other existing approaches, the methods it encompasses are real-time, since they do not rely on training data or machine learning algorithms. We evaluate them over two large, real-world datasets, with the outcomes suggesting a significant improvement over methods typically used in this context. We have also made our implementation and data publicly available, thus encouraging other researchers to use it as a benchmark and to extend it with new techniques for supporting user's navigational activity. Copyright 2012 ACM. en
heal.journalName ACM International Conference Proceeding Series en
dc.identifier.doi 10.1145/2254129.2254149 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής