dc.contributor.author |
Argyriou, EN |
en |
dc.contributor.author |
Bekos, MA |
en |
dc.contributor.author |
Kaufmann, M |
en |
dc.contributor.author |
Symvonis, A |
en |
dc.date.accessioned |
2014-03-01T02:53:35Z |
|
dc.date.available |
2014-03-01T02:53:35Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36429 |
|
dc.subject.other |
Disjoint edges |
en |
dc.subject.other |
Main tasks |
en |
dc.subject.other |
Planar graph |
en |
dc.subject.other |
Simultaneous graph drawing |
en |
dc.subject.other |
Vertex set |
en |
dc.subject.other |
Drawing (graphics) |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Graph theory |
en |
dc.title |
Combining problems on RAC drawings and simultaneous graph drawings |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-25878-7_41 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-25878-7_41 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
We present an overview of the first combinatorial results for the so-called geometric RAC simultaneous drawing problem (or GRacSim drawing problem, for short), i.e., a combination of problems on geometric RAC drawings [3] and geometric simultaneous graph drawings [2]. According to this problem, we are given two planar graphs G1∈=∈(V, E1) and G2∈=∈(V, E2) that share a common vertex set but have disjoint edge sets, i.e., E1∈⊆∈V ×V , E2∈⊆∈V ×V and E1∈∩∈E2∈=∈Ø The main task is to place the vertices on the plane so that, when the edges are drawn as straight-lines, (i) each graph is drawn planar, (ii) there are no edge overlaps, and, (iii) crossings between edges in E1 and E2 occur at right angles. © 2012 Springer-Verlag Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-25878-7_41 |
en |
dc.identifier.volume |
7034 LNCS |
en |
dc.identifier.spage |
433 |
en |
dc.identifier.epage |
434 |
en |