dc.contributor.author | Aisopos, F | en |
dc.contributor.author | Papadakis, G | en |
dc.contributor.author | Tserpes, K | en |
dc.contributor.author | Varvarigou, T | en |
dc.date.accessioned | 2014-03-01T02:53:35Z | |
dc.date.available | 2014-03-01T02:53:35Z | |
dc.date.issued | 2012 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/36434 | |
dc.subject | N-gram graphs | en |
dc.subject | Sentiment analysis | en |
dc.subject | Social context | en |
dc.subject.other | Classification methods | en |
dc.subject.other | Comparative analysis | en |
dc.subject.other | Content-based features | en |
dc.subject.other | Context-based | en |
dc.subject.other | Dimensionality reduction | en |
dc.subject.other | Discretizations | en |
dc.subject.other | Extraction costs | en |
dc.subject.other | Inherent characteristics | en |
dc.subject.other | Micro-blog | en |
dc.subject.other | Multiple Classification | en |
dc.subject.other | N-gram graphs | en |
dc.subject.other | Noise-Tolerant | en |
dc.subject.other | Real world data | en |
dc.subject.other | Sentiment analysis | en |
dc.subject.other | Social context | en |
dc.subject.other | Time efficiencies | en |
dc.subject.other | Traditional techniques | en |
dc.subject.other | Hypertext systems | en |
dc.subject.other | Virtual reality | en |
dc.subject.other | Data mining | en |
dc.title | Content vs. context for sentiment analysis: A comparative analysis over microblogs | en |
heal.type | conferenceItem | en |
heal.identifier.primary | 10.1145/2309996.2310028 | en |
heal.identifier.secondary | http://dx.doi.org/10.1145/2309996.2310028 | en |
heal.publicationDate | 2012 | en |
heal.abstract | Microblog content poses serious challenges to the applicability of traditional sentiment analysis and classification methods, due to its inherent characteristics. To tackle them, we introduce a method that relies on two orthogonal, but complementary sources of evidence: content-based features captured by n-gram graphs and context-based ones captured by polarity ratio. Both are language-neutral and noise-tolerant, guaranteeing high effectiveness and robustness in the settings we are considering. To ensure our approach can be integrated into practical applications with large volumes of data, we also aim at enhancing its time efficiency: we propose alternative sets of features with low extraction cost, explore dimensionality reduction and discretization techniques and experiment with multiple classification algorithms. We then evaluate our methods over a large, real-world data set extracted from Twitter, with the outcomes indicating significant improvements over the traditional techniques. Copyright 2012 ACM. | en |
heal.journalName | HT'12 - Proceedings of 23rd ACM Conference on Hypertext and Social Media | en |
dc.identifier.doi | 10.1145/2309996.2310028 | en |
dc.identifier.spage | 187 | en |
dc.identifier.epage | 196 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |