HEAL DSpace

Efficient keyword search on large tree structured datasets

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dimitriou, A en
dc.contributor.author Theodoratos, D en
dc.date.accessioned 2014-03-01T02:53:37Z
dc.date.available 2014-03-01T02:53:37Z
dc.date.issued 2012 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36452
dc.subject Keyword search en
dc.subject LCA en
dc.subject Ranking en
dc.subject Search algorithm en
dc.subject Tree-structured data en
dc.subject XML en
dc.subject.other Keyword search en
dc.subject.other LCA en
dc.subject.other Ranking en
dc.subject.other Search Algorithms en
dc.subject.other Tree-structured data en
dc.subject.other Algorithms en
dc.subject.other Forestry en
dc.subject.other Input output programs en
dc.subject.other Search engines en
dc.subject.other XML en
dc.subject.other Trees (mathematics) en
dc.subject.other Algorithms en
dc.subject.other Data en
dc.subject.other Forestry en
dc.subject.other Mathematics en
dc.subject.other Trees en
dc.title Efficient keyword search on large tree structured datasets en
heal.type conferenceItem en
heal.identifier.primary 10.1145/2254736.2254749 en
heal.identifier.secondary http://dx.doi.org/10.1145/2254736.2254749 en
heal.publicationDate 2012 en
heal.abstract Keyword search is the most popular paradigm for querying XML data on the web. In this context, three challenging problems are (a) to avoid missing useful results in the answer set, (b) to rank the results with respect to some relevance criterion and (c) to design algorithms that can efficiently compute the results on large datasets. In this paper, we present a novel multi-stack based algorithm that returns as an answer to a keyword query all the results ranked on their size. Our algorithm exploits a lattice of stacks each corresponding to a partition of the keyword set of the query. This feature empowers a linear time performance on the size of the input data for a given number of query keywords. As a result, our algorithm can run efficiently on large input data for several keywords. We also present a variation of our algorithm which accounts for infrequent keywords in the query and show that it can significantly improve the execution time. An extensive experimental evaluation of our approach confirms the theoretical analysis, and shows that it scales smoothly when the size of the input data and the number of input keywords increases. Copyright 2012 ACM. en
heal.journalName KEYS 2012 - Proceedings of the 3rd International Workshop on Keyword Search on Structured Data en
dc.identifier.doi 10.1145/2254736.2254749 en
dc.identifier.spage 63 en
dc.identifier.epage 74 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής