HEAL DSpace

Fuzzy joins using MapReduce

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Afrati, FN en
dc.contributor.author Sarma, AD en
dc.contributor.author Menestrina, D en
dc.contributor.author Parameswaran, A en
dc.contributor.author Ullman, JD en
dc.date.accessioned 2014-03-01T02:53:38Z
dc.date.available 2014-03-01T02:53:38Z
dc.date.issued 2012 en
dc.identifier.issn 10844627 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36464
dc.subject.other Communication cost en
dc.subject.other Computation model en
dc.subject.other Cost analysis en
dc.subject.other Edit distance en
dc.subject.other Input set en
dc.subject.other Jaccard distance en
dc.subject.other Map-reduce en
dc.subject.other Optimal algorithm en
dc.subject.other Real-world application en
dc.subject.other Research communities en
dc.subject.other Similarity threshold en
dc.subject.other Three component en
dc.subject.other Communication en
dc.subject.other Cost accounting en
dc.subject.other Costs en
dc.subject.other Hamming distance en
dc.subject.other Clustering algorithms en
dc.title Fuzzy joins using MapReduce en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICDE.2012.66 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICDE.2012.66 en
heal.identifier.secondary 6228109 en
heal.publicationDate 2012 en
heal.abstract Fuzzy/similarity joins have been widely studied in the research community and extensively used in real-world applications. This paper proposes and evaluates several algorithms for finding all pairs of elements from an input set that meet a similarity threshold. The computation model is a single MapReduce job. Because we allow only one MapReduce round, the Reduce function must be designed so a given output pair is produced by only one task, for many algorithms, satisfying this condition is one of the biggest challenges. We break the cost of an algorithm into three components: the execution cost of the mappers, the execution cost of the reducers, and the communication cost from the mappers to reducers. The algorithms are presented first in terms of Hamming distance, but extensions to edit distance and Jaccard distance are shown as well. We find that there are many different approaches to the similarity-join problem using MapReduce, and none dominates the others when both communication and reducer costs are considered. Our cost analyses enable applications to pick the optimal algorithm based on their communication, memory, and cluster requirements. © 2012 IEEE. en
heal.journalName Proceedings - International Conference on Data Engineering en
dc.identifier.doi 10.1109/ICDE.2012.66 en
dc.identifier.spage 498 en
dc.identifier.epage 509 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής