dc.contributor.author |
Argyriou, E |
en |
dc.contributor.author |
Bekos, M |
en |
dc.contributor.author |
Kaufmann, M |
en |
dc.contributor.author |
Symvonis, A |
en |
dc.date.accessioned |
2014-03-01T02:53:38Z |
|
dc.date.available |
2014-03-01T02:53:38Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36465 |
|
dc.subject.other |
Disjoint edges |
en |
dc.subject.other |
Edge crossing |
en |
dc.subject.other |
Embedded graphs |
en |
dc.subject.other |
Input graphs |
en |
dc.subject.other |
Linear time |
en |
dc.subject.other |
Planar graph |
en |
dc.subject.other |
Primal-dual |
en |
dc.subject.other |
Straight-line drawings |
en |
dc.subject.other |
Two-graphs |
en |
dc.subject.other |
Vertex set |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Graphic methods |
en |
dc.subject.other |
Graph theory |
en |
dc.title |
Geometric RAC simultaneous drawings of graphs |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-32241-9_25 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-32241-9_25 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
In this paper, we study the geometric RAC simultaneous drawing problem: Given two planar graphs that share a common vertex set but have disjoint edge sets, a geometric RAC simultaneous drawing is a straight-line drawing in which (i) each graph is drawn planar, (ii) there are no edge overlaps, and, (iii) crossings between edges of the two graphs occur at right-angles. We first prove that two planar graphs admitting a geometric simultaneous drawing may not admit a geometric RAC simultaneous drawing. We further show that a cycle and a matching always admit a geometric RAC simultaneous drawing, which can be constructed in linear time. We also study a closely related problem according to which we are given a planar embedded graph G and the main goal is to determine a geometric drawing of G and its dual G* (without the face-vertex corresponding to the external face) such that: (i) G and G* are drawn planar, (ii) each vertex of the dual is drawn inside its corresponding face of G and, (iii) the primal-dual edge crossings form right-angles. We prove that it is always possible to construct such a drawing if the input graph is an outerplanar embedded graph. © 2012 Springer-Verlag. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-32241-9_25 |
en |
dc.identifier.volume |
7434 LNCS |
en |
dc.identifier.spage |
287 |
en |
dc.identifier.epage |
298 |
en |