HEAL DSpace

Geometric RAC simultaneous drawings of graphs

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Argyriou, E en
dc.contributor.author Bekos, M en
dc.contributor.author Kaufmann, M en
dc.contributor.author Symvonis, A en
dc.date.accessioned 2014-03-01T02:53:38Z
dc.date.available 2014-03-01T02:53:38Z
dc.date.issued 2012 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36465
dc.subject.other Disjoint edges en
dc.subject.other Edge crossing en
dc.subject.other Embedded graphs en
dc.subject.other Input graphs en
dc.subject.other Linear time en
dc.subject.other Planar graph en
dc.subject.other Primal-dual en
dc.subject.other Straight-line drawings en
dc.subject.other Two-graphs en
dc.subject.other Vertex set en
dc.subject.other Geometry en
dc.subject.other Graphic methods en
dc.subject.other Graph theory en
dc.title Geometric RAC simultaneous drawings of graphs en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-32241-9_25 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-32241-9_25 en
heal.publicationDate 2012 en
heal.abstract In this paper, we study the geometric RAC simultaneous drawing problem: Given two planar graphs that share a common vertex set but have disjoint edge sets, a geometric RAC simultaneous drawing is a straight-line drawing in which (i) each graph is drawn planar, (ii) there are no edge overlaps, and, (iii) crossings between edges of the two graphs occur at right-angles. We first prove that two planar graphs admitting a geometric simultaneous drawing may not admit a geometric RAC simultaneous drawing. We further show that a cycle and a matching always admit a geometric RAC simultaneous drawing, which can be constructed in linear time. We also study a closely related problem according to which we are given a planar embedded graph G and the main goal is to determine a geometric drawing of G and its dual G* (without the face-vertex corresponding to the external face) such that: (i) G and G* are drawn planar, (ii) each vertex of the dual is drawn inside its corresponding face of G and, (iii) the primal-dual edge crossings form right-angles. We prove that it is always possible to construct such a drawing if the input graph is an outerplanar embedded graph. © 2012 Springer-Verlag. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-32241-9_25 en
dc.identifier.volume 7434 LNCS en
dc.identifier.spage 287 en
dc.identifier.epage 298 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής