HEAL DSpace

H2RDF: Adaptive query processing on RDF data in the cloud

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papailiou, N en
dc.contributor.author Konstantinou, I en
dc.contributor.author Tsoumakos, D en
dc.contributor.author Koziris, N en
dc.date.accessioned 2014-03-01T02:53:39Z
dc.date.available 2014-03-01T02:53:39Z
dc.date.issued 2012 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36469
dc.subject Hadoop en
dc.subject HBase en
dc.subject MapReduce en
dc.subject NoSQL en
dc.subject RDF en
dc.subject SparQL en
dc.subject.other Hadoop en
dc.subject.other HBase en
dc.subject.other Map-reduce en
dc.subject.other NoSQL en
dc.subject.other RDF en
dc.subject.other SparQL en
dc.subject.other Algorithms en
dc.subject.other Queueing networks en
dc.subject.other World Wide Web en
dc.title H2RDF: Adaptive query processing on RDF data in the cloud en
heal.type conferenceItem en
heal.identifier.primary 10.1145/2187980.2188058 en
heal.identifier.secondary http://dx.doi.org/10.1145/2187980.2188058 en
heal.publicationDate 2012 en
heal.abstract In this work we present H2RDF, a fully distributed RDF store that combines the MapReduce processing framework with a NoSQL distributed data store. Our system features two unique characteristics that enable efficient processing of both simple and multi-join SPARQL queries on virtually unlimited number of triples: Join algorithms that execute joins according to query selectivity to reduce processing; and adaptive choice among centralized and distributed (MapReduce-based) join execution for fast query responses. Our system efficiently answers both simple joins and complex multivariate queries and easily scales to 3 billion triples using a small cluster of 9 worker nodes. H2RDF outperforms state-of-the-art distributed solutions in multi-join and nonselective queries while achieving comparable performance to centralized solutions in selective queries. In this demonstration we showcase the system's functionality through an interactive GUI. Users will be able to execute predefined or custom-made SPARQL queries on datasets of different sizes, using different join algorithms. Moreover, they can repeat all queries utilizing a different number of cluster resources. Using real-time cluster monitoring and detailed statistics, participants will be able to understand the advantages of different execution schemes versus the input data as well as the scalability properties of H2RDF over both the data size and the available worker resources. Copyright is held by the International World Wide Web Conference Committee (IW3C2). en
heal.journalName WWW'12 - Proceedings of the 21st Annual Conference on World Wide Web Companion en
dc.identifier.doi 10.1145/2187980.2188058 en
dc.identifier.spage 397 en
dc.identifier.epage 400 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής