dc.contributor.author |
Angelini, P |
en |
dc.contributor.author |
Didimo, W |
en |
dc.contributor.author |
Kobourov, S |
en |
dc.contributor.author |
McHedlidze, T |
en |
dc.contributor.author |
Roselli, V |
en |
dc.contributor.author |
Symvonis, A |
en |
dc.contributor.author |
Wismath, S |
en |
dc.date.accessioned |
2014-03-01T02:53:55Z |
|
dc.date.available |
2014-03-01T02:53:55Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36487 |
|
dc.subject.other |
A-monotone |
en |
dc.subject.other |
Drawing algorithms |
en |
dc.subject.other |
Linear time |
en |
dc.subject.other |
Planar graph |
en |
dc.subject.other |
Drawing (graphics) |
en |
dc.subject.other |
Graph theory |
en |
dc.title |
Monotone drawings of graphs with fixed embedding |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-25878-7_36 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-25878-7_36 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
A drawing of a graph is a monotone drawing if for every pair of vertices u and v, there is a path drawn from u to v that is monotone in some direction. In this paper we investigate planar monotone drawings in the fixed embedding setting, i.e., a planar embedding of the graph is given as part of the input that must be preserved by the drawing algorithm. In this setting we prove that every planar graph on n vertices admits a planar monotone drawing with at most two bends per edge and with at most 4n - 10 bends in total; such a drawing can be computed in linear time and requires polynomial area. We also show that two bends per edge are sometimes necessary on a linear number of edges of the graph. Furthermore, we investigate subclasses of planar graphs that can be realized as embedding-preserving monotone drawings with straight-line edges, and we show that biconnected embedded planar graphs and outerplane graphs always admit such drawings, which can be computed in linear time. © 2012 Springer-Verlag Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-25878-7_36 |
en |
dc.identifier.volume |
7034 LNCS |
en |
dc.identifier.spage |
379 |
en |
dc.identifier.epage |
390 |
en |