HEAL DSpace

Monotone drawings of graphs with fixed embedding

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Angelini, P en
dc.contributor.author Didimo, W en
dc.contributor.author Kobourov, S en
dc.contributor.author McHedlidze, T en
dc.contributor.author Roselli, V en
dc.contributor.author Symvonis, A en
dc.contributor.author Wismath, S en
dc.date.accessioned 2014-03-01T02:53:55Z
dc.date.available 2014-03-01T02:53:55Z
dc.date.issued 2012 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36487
dc.subject.other A-monotone en
dc.subject.other Drawing algorithms en
dc.subject.other Linear time en
dc.subject.other Planar graph en
dc.subject.other Drawing (graphics) en
dc.subject.other Graph theory en
dc.title Monotone drawings of graphs with fixed embedding en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-25878-7_36 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-25878-7_36 en
heal.publicationDate 2012 en
heal.abstract A drawing of a graph is a monotone drawing if for every pair of vertices u and v, there is a path drawn from u to v that is monotone in some direction. In this paper we investigate planar monotone drawings in the fixed embedding setting, i.e., a planar embedding of the graph is given as part of the input that must be preserved by the drawing algorithm. In this setting we prove that every planar graph on n vertices admits a planar monotone drawing with at most two bends per edge and with at most 4n - 10 bends in total; such a drawing can be computed in linear time and requires polynomial area. We also show that two bends per edge are sometimes necessary on a linear number of edges of the graph. Furthermore, we investigate subclasses of planar graphs that can be realized as embedding-preserving monotone drawings with straight-line edges, and we show that biconnected embedded planar graphs and outerplane graphs always admit such drawings, which can be computed in linear time. © 2012 Springer-Verlag Berlin Heidelberg. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-25878-7_36 en
dc.identifier.volume 7034 LNCS en
dc.identifier.spage 379 en
dc.identifier.epage 390 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής