HEAL DSpace

Multifactor dimensionality reduction for the analysis of obesity in a nutrigenetics context

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karayianni, K en
dc.contributor.author Valavanis, I en
dc.contributor.author Grimaldi, K en
dc.contributor.author Nikita, K en
dc.date.accessioned 2014-03-01T02:53:55Z
dc.date.available 2014-03-01T02:53:55Z
dc.date.issued 2012 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36488
dc.subject Multifactor Dimensionality Reduction en
dc.subject nutrigenetics en
dc.subject obesity en
dc.subject prediction model en
dc.subject.other Classification mechanism en
dc.subject.other Dimensionality reduction en
dc.subject.other Generalization ability en
dc.subject.other Genetic variation en
dc.subject.other Multi-factor en
dc.subject.other nutrigenetics en
dc.subject.other obesity en
dc.subject.other On-body en
dc.subject.other Prediction model en
dc.subject.other Predictive models en
dc.subject.other Artificial intelligence en
dc.subject.other Mathematical models en
dc.subject.other Nutrition en
dc.title Multifactor dimensionality reduction for the analysis of obesity in a nutrigenetics context en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-30448-4_29 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-30448-4_29 en
heal.publicationDate 2012 en
heal.abstract The current work aims to study within a nutrigenetics context the multifactorial trait beneath obesity. To this end, the use of parallel Multifactor Dimensionality Reduction (pMDR) is investigated towards the identification of i) factors that have an impact to obesity onset solely or interacting with each other and ii) rules that describe the interactions among them. Data have been obtained from a large scale nutrigenetics study and each subject, characterized as normal or overweight based on Body Mass Index (BMI), is featured a 63-dimensional vector describing his/her genetic variations and nutritional habits. pMDR method was used to reduce the initial set of factors into subsets that can classify a subject into either normal or overweight with a certain accuracy and are further used by corresponding prediction models. Results showed that pMDR selected factors associated to obesity and constructed predictive models showing a good generalization ability. Rules describing interactions of the selected factors were extracted, thus enlightening the classification mechanism of the constructed model. © 2012 Springer-Verlag. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-30448-4_29 en
dc.identifier.volume 7297 LNCS en
dc.identifier.spage 231 en
dc.identifier.epage 238 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής