HEAL DSpace

Navigation Functions for everywhere partially sufficiently curved worlds

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Filippidis, IF en
dc.contributor.author Kyriakopoulos, KJ en
dc.date.accessioned 2014-03-01T02:53:56Z
dc.date.available 2014-03-01T02:53:56Z
dc.date.issued 2012 en
dc.identifier.issn 10504729 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36495
dc.subject.other Boundary points en
dc.subject.other Configuration space en
dc.subject.other Curvature radii en
dc.subject.other Diffeomorphisms en
dc.subject.other Navigation functions en
dc.subject.other Normal curvature en
dc.subject.other Tangent spheres en
dc.subject.other Robotics en
dc.title Navigation Functions for everywhere partially sufficiently curved worlds en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICRA.2012.6225105 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICRA.2012.6225105 en
heal.identifier.secondary 6225105 en
heal.publicationDate 2012 en
heal.abstract We extend Navigation Functions (NF) to worlds of more general geometry and topology. This is achieved without the need for diffeomorphisms, by direct definition in the geometrically complicated configuration space. Every obstacle boundary point should be partially sufficiently curved. This requires that at least one principal normal curvature be sufficient. A normal curvature is termed sufficient when the tangent sphere with diameter the associated curvature radius is a subset of the obstacle. Examples include ellipses with bounded eccentricity, tori, cylinders, one-sheet hyperboloids and others. Our proof establishes the existence of appropriate tuning for this purpose. Direct application to geometrically complicated cases is illustrated through nontrivial simulations. © 2012 IEEE. en
heal.journalName Proceedings - IEEE International Conference on Robotics and Automation en
dc.identifier.doi 10.1109/ICRA.2012.6225105 en
dc.identifier.spage 2115 en
dc.identifier.epage 2120 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής