HEAL DSpace

Online Sum-Radii Clustering

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fotakis, D en
dc.contributor.author Koutris, P en
dc.date.accessioned 2014-03-01T02:53:59Z
dc.date.available 2014-03-01T02:53:59Z
dc.date.issued 2012 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36510
dc.subject.other Competitive algorithms en
dc.subject.other Competitive ratio en
dc.subject.other Euclidean planes en
dc.subject.other Lower bounds en
dc.subject.other Metric spaces en
dc.subject.other On-line algorithms en
dc.subject.other Primal-dual en
dc.subject.other Total costs en
dc.subject.other Tree metrics en
dc.subject.other Upper Bound en
dc.subject.other Computer science en
dc.subject.other Costs en
dc.subject.other Forestry en
dc.subject.other Trees (mathematics) en
dc.subject.other Clustering algorithms en
dc.subject.other Algorithms en
dc.subject.other Computers en
dc.subject.other Costs en
dc.subject.other Forestry en
dc.subject.other Mathematics en
dc.subject.other Trees en
dc.title Online Sum-Radii Clustering en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-32589-2_36 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-32589-2_36 en
heal.publicationDate 2012 en
heal.abstract In Online Sum-Radii Clustering, n demand points arrive online and must be irrevocably assigned to a cluster upon arrival. The cost of each cluster is the sum of a fixed opening cost and its radius, and the objective is to minimize the total cost of the clusters opened by the algorithm. We show that the deterministic competitive ratio of Online Sum-Radii Clustering for general metric spaces is Θ(logn), where the upper bound follows from a primal-dual online algorithm, and the lower bound is valid for ternary Hierarchically Well-Separated Trees (HSTs) and for the Euclidean plane. Combined with the results of (Csirik et al., MFCS 2010), this result demonstrates that the deterministic competitive ratio of Online Sum-Radii Clustering changes abruptly, from constant to logarithmic, when we move from the line to the plane. We also show that Online Sum-Radii Clustering in HSTs is closely related to the Parking Permit problem introduced by (Meyerson, FOCS 2005). Exploiting the relation to Parking Permit, we obtain a lower bound of Ω(loglogn) on the randomized competitive ratio of Online Sum-Radii Clustering in tree metrics. Moreover, we present a simple randomized O(logn)-competitive algorithm, and a deterministic O(loglogn)-competitive algorithm for the fractional version of the problem. © 2012 Springer-Verlag. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-32589-2_36 en
dc.identifier.volume 7464 LNCS en
dc.identifier.spage 395 en
dc.identifier.epage 406 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής