dc.contributor.author |
Fotakis, D |
en |
dc.contributor.author |
Koutris, P |
en |
dc.date.accessioned |
2014-03-01T02:53:59Z |
|
dc.date.available |
2014-03-01T02:53:59Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36510 |
|
dc.subject.other |
Competitive algorithms |
en |
dc.subject.other |
Competitive ratio |
en |
dc.subject.other |
Euclidean planes |
en |
dc.subject.other |
Lower bounds |
en |
dc.subject.other |
Metric spaces |
en |
dc.subject.other |
On-line algorithms |
en |
dc.subject.other |
Primal-dual |
en |
dc.subject.other |
Total costs |
en |
dc.subject.other |
Tree metrics |
en |
dc.subject.other |
Upper Bound |
en |
dc.subject.other |
Computer science |
en |
dc.subject.other |
Costs |
en |
dc.subject.other |
Forestry |
en |
dc.subject.other |
Trees (mathematics) |
en |
dc.subject.other |
Clustering algorithms |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computers |
en |
dc.subject.other |
Costs |
en |
dc.subject.other |
Forestry |
en |
dc.subject.other |
Mathematics |
en |
dc.subject.other |
Trees |
en |
dc.title |
Online Sum-Radii Clustering |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-32589-2_36 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-32589-2_36 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
In Online Sum-Radii Clustering, n demand points arrive online and must be irrevocably assigned to a cluster upon arrival. The cost of each cluster is the sum of a fixed opening cost and its radius, and the objective is to minimize the total cost of the clusters opened by the algorithm. We show that the deterministic competitive ratio of Online Sum-Radii Clustering for general metric spaces is Θ(logn), where the upper bound follows from a primal-dual online algorithm, and the lower bound is valid for ternary Hierarchically Well-Separated Trees (HSTs) and for the Euclidean plane. Combined with the results of (Csirik et al., MFCS 2010), this result demonstrates that the deterministic competitive ratio of Online Sum-Radii Clustering changes abruptly, from constant to logarithmic, when we move from the line to the plane. We also show that Online Sum-Radii Clustering in HSTs is closely related to the Parking Permit problem introduced by (Meyerson, FOCS 2005). Exploiting the relation to Parking Permit, we obtain a lower bound of Ω(loglogn) on the randomized competitive ratio of Online Sum-Radii Clustering in tree metrics. Moreover, we present a simple randomized O(logn)-competitive algorithm, and a deterministic O(loglogn)-competitive algorithm for the fractional version of the problem. © 2012 Springer-Verlag. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-32589-2_36 |
en |
dc.identifier.volume |
7464 LNCS |
en |
dc.identifier.spage |
395 |
en |
dc.identifier.epage |
406 |
en |