dc.contributor.author |
Angelini, P |
en |
dc.contributor.author |
Di Battista, G |
en |
dc.contributor.author |
Kaufmann, M |
en |
dc.contributor.author |
McHedlidze, T |
en |
dc.contributor.author |
Roselli, V |
en |
dc.contributor.author |
Squarcella, C |
en |
dc.date.accessioned |
2014-03-01T02:54:01Z |
|
dc.date.available |
2014-03-01T02:54:01Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36538 |
|
dc.subject.other |
Open problems |
en |
dc.subject.other |
Planar graph |
en |
dc.subject.other |
Point set |
en |
dc.subject.other |
Drawing (graphics) |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Graph theory |
en |
dc.title |
Small point sets for simply-nested planar graphs |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-25878-7_8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-25878-7_8 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
A point set P∈⊆∈R2 is universal for a class G if every graph of has a planar straight-line embedding into P. We prove that there exists a O(n(log n/log log n)2)size universal point set for the class of simply-nested n-vertex planar graphs. This is a step towards a full answer for the well-known open problem on the size of the smallest universal point sets for planar graphs [1, 5, 9]. © 2012 Springer-Verlag Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-25878-7_8 |
en |
dc.identifier.volume |
7034 LNCS |
en |
dc.identifier.spage |
75 |
en |
dc.identifier.epage |
85 |
en |