HEAL DSpace

Thermodynamic analysis of an open cycle solid desiccant cooling system using Artificial Neural Network

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koronaki, IP en
dc.contributor.author Rogdakis, E en
dc.contributor.author Kakatsiou, T en
dc.date.accessioned 2014-03-01T02:54:03Z
dc.date.available 2014-03-01T02:54:03Z
dc.date.issued 2012 en
dc.identifier.issn 01968904 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36559
dc.subject Dehumidification en
dc.subject Desiccant wheel en
dc.subject Neural network en
dc.subject Silica gel en
dc.subject.other Air flow en
dc.subject.other Airconditioning systems en
dc.subject.other Black-box model en
dc.subject.other Correlation models en
dc.subject.other Dehumidification en
dc.subject.other Desiccant cooling systems en
dc.subject.other Desiccant wheels en
dc.subject.other Experimental data en
dc.subject.other Heat pumps en
dc.subject.other In-line en
dc.subject.other Key parameters en
dc.subject.other Model development en
dc.subject.other Neural network model en
dc.subject.other Open cycles en
dc.subject.other Outlet air en
dc.subject.other Output values en
dc.subject.other Process streams en
dc.subject.other Regeneration air en
dc.subject.other Sensible heat factor en
dc.subject.other Thermo dynamic analysis en
dc.subject.other Thermodynamic conditions en
dc.subject.other Air conditioning en
dc.subject.other Cooling systems en
dc.subject.other Humidity control en
dc.subject.other Neural networks en
dc.subject.other Silica gel en
dc.subject.other Thermoanalysis en
dc.subject.other Driers (materials) en
dc.title Thermodynamic analysis of an open cycle solid desiccant cooling system using Artificial Neural Network en
heal.type conferenceItem en
heal.identifier.primary 10.1016/j.enconman.2012.01.022 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.enconman.2012.01.022 en
heal.publicationDate 2012 en
heal.abstract This paper examines the performance of an installed open cycle air-conditioning system with a silica gel desiccant wheel which uses a conventional heat pump and heat exchangers for the improvement of the outlet air of the system. A neural network model based on the training of a black box model with experimental data was developed as a method based on experimental results predicting the state conditions of air at the process and regeneration stream. The model development was followed by a Sensitivity Analysis performed on these predicted results. The key parameters were the thermodynamic condition of process and regeneration air streams, the sensible heat factor of the room, and the mass air flow ratio of the regeneration and process streams. The results of this analysis revealed that all investigated parameters influenced the performance of the desiccant unit. Predicted output values of the proposed Neural Network Model for Desiccant Systems are in line with results from other correlation models based on the interpolation of experimental data obtained from industrial air conditioning installations. © 2012 Elsevier Ltd. All rights reserved. en
heal.journalName Energy Conversion and Management en
dc.identifier.doi 10.1016/j.enconman.2012.01.022 en
dc.identifier.volume 60 en
dc.identifier.spage 152 en
dc.identifier.epage 160 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής