HEAL DSpace

TIRAMOLA: Elastic nosql provisioning through a cloud management platform

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Konstantinou, I en
dc.contributor.author Angelou, E en
dc.contributor.author Tsoumakos, D en
dc.contributor.author Boumpouka, C en
dc.contributor.author Koziris, N en
dc.contributor.author Sioutas, S en
dc.date.accessioned 2014-03-01T02:54:03Z
dc.date.available 2014-03-01T02:54:03Z
dc.date.issued 2012 en
dc.identifier.issn 07308078 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36562
dc.subject automatic cluster resize en
dc.subject cloud monitoring en
dc.subject elasticity en
dc.subject markov decision process en
dc.subject nosql en
dc.subject open-source en
dc.subject.other automatic cluster resize en
dc.subject.other Cloud monitoring en
dc.subject.other Markov Decision Processes en
dc.subject.other nosql en
dc.subject.other Open-source en
dc.subject.other Elasticity en
dc.subject.other Markov processes en
dc.subject.other Optimization en
dc.title TIRAMOLA: Elastic nosql provisioning through a cloud management platform en
heal.type conferenceItem en
heal.identifier.primary 10.1145/2213836.2213943 en
heal.identifier.secondary http://dx.doi.org/10.1145/2213836.2213943 en
heal.publicationDate 2012 en
heal.abstract NoSQL databases focus on analytical processing of large scale datasets, offering increased scalability over commodity hardware. One of their strongest features is elasticity, which allows for fairly portioned premiums and high-quality performance. Yet, the process of adaptive expansion and contraction of resources usually involves a lot of manual effort, often requiring the definition of the conditions for scaling up or down to be provided by the users. To date, there exists no open-source system for automatic resizing of NoSQL clusters. In this demonstration, we present TIRAMOLA, a modular, cloud-enabled framework for monitoring and adaptively resizing NoSQL clusters. Our system incorporates a decision-making module which allows for optimal cluster resize actions in order to maximize any quantifiable reward function provided together with life-long adaptation to workload or infrastructural changes. The audience will be able to initiate HBase clusters of various sizes and apply varying workloads through multiple YCSB clients. The attendees will be able to watch, in real-time, the system perform automatic VM additions and removals as well as how cluster performance metrics change relative to the optimization parameters of their choice. © 2012 ACM. en
heal.journalName Proceedings of the ACM SIGMOD International Conference on Management of Data en
dc.identifier.doi 10.1145/2213836.2213943 en
dc.identifier.spage 725 en
dc.identifier.epage 728 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής