HEAL DSpace

Variability response functions for stochastic systems under dynamic excitations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadopoulos, V en
dc.contributor.author Kokkinos, O en
dc.date.accessioned 2014-03-01T02:54:04Z
dc.date.available 2014-03-01T02:54:04Z
dc.date.issued 2012 en
dc.identifier.issn 02668920 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36570
dc.subject Dynamic variability response functions en
dc.subject Stochastic dynamic systems en
dc.subject Stochastic finite element analysis en
dc.subject Upper bounds en
dc.subject.other Dynamic excitations en
dc.subject.other Dynamic variability en
dc.subject.other Integral form en
dc.subject.other Linear stochastic system en
dc.subject.other Marginal probability en
dc.subject.other Monte Carlo Simulation en
dc.subject.other Response functions en
dc.subject.other Static loads en
dc.subject.other Stochastic dynamic systems en
dc.subject.other Stochastic field modeling en
dc.subject.other Stochastic finite element analysis en
dc.subject.other System property en
dc.subject.other System response en
dc.subject.other Time dependent en
dc.subject.other Transient systems en
dc.subject.other Uncertain parameters en
dc.subject.other Upper Bound en
dc.subject.other Variability response functions en
dc.subject.other Computer simulation en
dc.subject.other Dynamic response en
dc.subject.other Dynamical systems en
dc.subject.other Finite element method en
dc.subject.other Integral equations en
dc.subject.other Monte Carlo methods en
dc.subject.other Spectral density en
dc.subject.other Stochastic systems en
dc.subject.other Uncertain systems en
dc.subject.other Uncertainty analysis en
dc.subject.other Probability density function en
dc.title Variability response functions for stochastic systems under dynamic excitations en
heal.type conferenceItem en
heal.identifier.primary 10.1016/j.probengmech.2011.08.002 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.probengmech.2011.08.002 en
heal.publicationDate 2012 en
heal.abstract The concept of variability response functions (VRFs) is extended in this work to linear stochastic systems under dynamic excitations. An integral form for the variance of the dynamic response of stochastic systems is considered, involving a Dynamic VRF (DVRF) and the spectral density function of the stochastic field modeling the uncertain system properties. As in the case of linear stochastic systems under static loads, the independence of the DVRF to the spectral density and the marginal probability density function of the stochastic field modeling the uncertain parameters is assumed. This assumption is here validated with brute-force Monte Carlo simulations. The uncertain system property considered is the inverse of the elastic modulus (flexibility). The same integral expression can be used to calculate the mean response of a dynamic system using a Dynamic Mean Response Function (DMRF) which is a function similar to the DVRF. These integral forms can be used to efficiently compute the mean and variance of the transient system response together with time dependent spectral-distribution-free upper bounds. They also provide an insight into the mechanisms controlling the dynamic mean and variability system response. © 2011 Elsevier Ltd. All rights reserved. en
heal.journalName Probabilistic Engineering Mechanics en
dc.identifier.doi 10.1016/j.probengmech.2011.08.002 en
dc.identifier.volume 28 en
dc.identifier.spage 176 en
dc.identifier.epage 184 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής