dc.contributor.author |
Papadopoulos, V |
en |
dc.contributor.author |
Kokkinos, O |
en |
dc.date.accessioned |
2014-03-01T02:54:04Z |
|
dc.date.available |
2014-03-01T02:54:04Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
02668920 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36570 |
|
dc.subject |
Dynamic variability response functions |
en |
dc.subject |
Stochastic dynamic systems |
en |
dc.subject |
Stochastic finite element analysis |
en |
dc.subject |
Upper bounds |
en |
dc.subject.other |
Dynamic excitations |
en |
dc.subject.other |
Dynamic variability |
en |
dc.subject.other |
Integral form |
en |
dc.subject.other |
Linear stochastic system |
en |
dc.subject.other |
Marginal probability |
en |
dc.subject.other |
Monte Carlo Simulation |
en |
dc.subject.other |
Response functions |
en |
dc.subject.other |
Static loads |
en |
dc.subject.other |
Stochastic dynamic systems |
en |
dc.subject.other |
Stochastic field modeling |
en |
dc.subject.other |
Stochastic finite element analysis |
en |
dc.subject.other |
System property |
en |
dc.subject.other |
System response |
en |
dc.subject.other |
Time dependent |
en |
dc.subject.other |
Transient systems |
en |
dc.subject.other |
Uncertain parameters |
en |
dc.subject.other |
Upper Bound |
en |
dc.subject.other |
Variability response functions |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Dynamic response |
en |
dc.subject.other |
Dynamical systems |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Spectral density |
en |
dc.subject.other |
Stochastic systems |
en |
dc.subject.other |
Uncertain systems |
en |
dc.subject.other |
Uncertainty analysis |
en |
dc.subject.other |
Probability density function |
en |
dc.title |
Variability response functions for stochastic systems under dynamic excitations |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1016/j.probengmech.2011.08.002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.probengmech.2011.08.002 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
The concept of variability response functions (VRFs) is extended in this work to linear stochastic systems under dynamic excitations. An integral form for the variance of the dynamic response of stochastic systems is considered, involving a Dynamic VRF (DVRF) and the spectral density function of the stochastic field modeling the uncertain system properties. As in the case of linear stochastic systems under static loads, the independence of the DVRF to the spectral density and the marginal probability density function of the stochastic field modeling the uncertain parameters is assumed. This assumption is here validated with brute-force Monte Carlo simulations. The uncertain system property considered is the inverse of the elastic modulus (flexibility). The same integral expression can be used to calculate the mean response of a dynamic system using a Dynamic Mean Response Function (DMRF) which is a function similar to the DVRF. These integral forms can be used to efficiently compute the mean and variance of the transient system response together with time dependent spectral-distribution-free upper bounds. They also provide an insight into the mechanisms controlling the dynamic mean and variability system response. © 2011 Elsevier Ltd. All rights reserved. |
en |
heal.journalName |
Probabilistic Engineering Mechanics |
en |
dc.identifier.doi |
10.1016/j.probengmech.2011.08.002 |
en |
dc.identifier.volume |
28 |
en |
dc.identifier.spage |
176 |
en |
dc.identifier.epage |
184 |
en |