HEAL DSpace

Stochastic simulation of hydrosystems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koutsoyiannis, D en
dc.date.accessioned 2014-03-01T02:54:15Z
dc.date.available 2014-03-01T02:54:15Z
dc.date.issued 2005 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36766
dc.title Stochastic simulation of hydrosystems en
heal.type conferenceItem en
heal.publicationDate 2005 en
heal.abstract Due to their complexity, hydrosystems, including water resource systems, flood management systems, and hydropower systems are frequently studied using stochastic simulation. A generalized solution procedure for hydrosystems problems, including systems identification, modeling and forecasting, hydrologic design, water resources management, and flood management, is discussed. Emphasis is given on the stochastic representation of hydrologic processes, which have a dominant role in hydrosystems. Peculiarities of hydrologic and other geophysical processes (seasonality, long-term persistence, intermittency, skewness, spatial variability) gave rise to substantial research that resulted in numerous stochastic tools appropriate for applications in hydrosystems. Four examples of such tools are discussed: (1) the multivariate periodic autoregressive model of order 1 [PAR(1)], which reproduces seasonality and skewness but not long-term persistence;(2) a generalized multivariate stationary model that reproduces all kinds of persistence and simultaneously skewness but not seasonality; (3) a combination of the previous two cases in a multivariate disaggregation framework that can respect almost all peculiarities except intermittency; and (4) the Bartlett-Lewis process that is appropriate for modeling rainfall and emphasizes its intermittent character on a fine time scale. en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής