HEAL DSpace

Επεξεργασία Σημάτων Μουσικής και Εφαρμογές Αναγνώρισης

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.advisor Μαραγκός, Πέτρος el
dc.contributor.author Ζλατίντση, Αθανασία Χ. el
dc.contributor.author Zlatintsi, Athanasia C. en
dc.date.accessioned 2014-09-08T09:40:11Z
dc.date.available 2014-09-08T09:40:11Z
dc.date.copyright 2014-02-06 -
dc.date.issued 2014-09-08
dc.date.submitted 2014-02-06 -
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/38974
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.1686
dc.description 142 σ. el
dc.description.abstract Η διδακτορική αυτή έρευνα ασχολείται με το ϑέμα της ψηφιακής επεξεργασίας μουσικών σημάτων και την ανάλυσή τους με υπολογιστικές μεθόδους με στόχο την εξαγωγή χρήσιμης πληροφορίας για την αναγνώρισή τους. Συγκεκριμένα μελετάμε και αναπτύσσουμε αποτελεσματικούς αλγορίθμους, με τη χρήση μη-γραμμικών μοντέλων, για την επεξεργασία των σημάτων μουσικής, την κατανόηση μουσικών ϕαινομένων και τη μοντελοποίηση τους. Εστιάζουμε στη διερεύνηση και την ανάλυση των σχέσεων μεταξύ των μουσικών οργάνων για την κατανόηση της λειτουργίας και των χαρακτηριστικών τους. Εξετάζουμε τα γνωρίσματα των διαφορετικών ειδών μουσικής, ενώ επιπλέον αξιολογούμε την αποτελεσματικότητα των μη-γραμμικών μοντέλων για την ανίχνευση σημαντικών μουσικών και γενικά ακουστικών γεγονότων. Η ανάλυση αυτή συνεισφέρει στην έρευνα και στην τεχνολογία αιχμής που σχετίζεται με την αυτόματη κατηγοριοποίηση μουσικής μέσω των διαφορετικών αυτών πλαισίων, αλλά και στη δημιουργία περιλήψεων των ηχητικών σημάτων. Τέτοιες εφαρμογές στις μέρες μας συναντώνται ευρέως σε εφαρμογές από το λογισμικό υπολογιστών έως τα κινητά τηλέφωνα τρίτης γενιάς. Λόγω της πληθώρας των ηχητικών, μουσικών, αλλά και πολυμεσικών δεδομένων, η χρησιμότητα της μελέτης αυτής διαφαίνεται σε εφαρμογές όπως η αυτόματη αναζήτηση μουσικής με ϐάση το είδος, η αναγνώριση ϐασικών δομών της μουσικής, όπως για παράδειγμα τα μουσικά όργανα, και η δημιουργία περιλήψεων. Με ϐάση το πλαίσιο αυτό προτείνουμε νέα χαρακτηριστικά για τη μοντελοποίηση των σημάτων μουσικής. Η πειραματική αξιολόγηση τους τεκμηριώνει τη δυναμική των μεθόδων που ακολουθούμε καθώς τα αποτελέσματα παρουσιάζονται ιδιαίτερα ενθαρρυντικά. Συγκεκριμένα, η έρευνα αυτή δείχνει πως τα προτεινόμενα χαρακτηριστικά δύνανται να περιγράψουν σημαντικά ϕαινόμενα των μουσικών σημάτων όπως για παράδειγμα τις μικρο-μεταβολές των δομών τους. Επιπλέον, αναπαραστάσεις που ϐασίζονται στις μακροδομές των σημάτων επιφέρουν μείωση της πολυπλοκότητας του συστήματος κατηγοριοποίησης, εφόσον ικανοποιητικά αποτελέσματα επιτυγχάνονται με απλούστερα στατιστικά μοντέλα. Τέλος, η εισαγωγή ιδεών όπως η «μουσική» συστοιχία ϕίλτρων επιδεικνύει ιδιαίτερη διακριτική ικανότητα στην κατηγοριοποίηση των μουσικών σημάτων. el
dc.description.abstract This thesis lays in the area of signal processing and analysis ofmusic signals using computational methods for the extraction of effective representations for automatic recognition. We explore and develop efficient algorithms using nonlinear methods for the analysis of the structure of music signals, which is of importance for their modeling. Our main research directions deals with the analysis of the structure and the characteristics of musical instruments in order to gain insight about their function and properties. We study the characteristics of the different genres of music. Finally, we evaluate the effectiveness of the proposed nonlinear models for the detection of perceptually important music and audio events. The approach we follow contributes to state-of-the-art technologies related to automatic computer-based recognition of musical signals and audio summarization, which nowadays are essential in everyday life. Because of the vast amount of music, audio and multimedia data in the web and our personal computers, the use of this study could be shown in applications such as automatic genre classification, automatic recognition of music’s basic structures, such as musical instruments, and audio content analysis for music and audio summarization. The above mentioned applications require robust solutions to information processing problems. Toward this goal, the development of efficient digital signal processing methods and the extraction of relevant features is of importance. In this thesis we propose such methods and algorithms for feature extraction with interesting results that render the descriptors of direct applicability. The proposed methods are applied on classification experiments illustrating that they can capture important aspects of music, such as the micro-variations of their structure. Descriptors based on macro-structures may reduce the complexity of the classification system, since satisfactory results can be achieved using simpler statistical models. Finally, the introduction of a ‘‘music’’ filterbank appears to be promising for automatic genre classification. en
dc.description.statementofresponsibility Αθανασία Χ. Ζλατίντση el
dc.language.iso el en
dc.rights ETDFree-policy.xml en
dc.subject Επεξεργασία σημάτων μουσικής el
dc.subject Αναγνώριση μουσικών οργάνων el
dc.subject Ηχόχρωμα el
dc.subject Αναγνώριση μουσικών ειδών el
dc.subject Ηχητικές περιλήψεις el
dc.subject Φράκταλ el
dc.subject Ανάλυση σε πολλαπλές κλίμακες el
dc.subject AM-FM διαμορφώσεις el
dc.subject Αλγόριθμος διαχωρισμού ενέργειας el
dc.subject Μονοτροπική ακουσική σημαντικότητα el
dc.subject Music signal analysis en
dc.subject Instrument classification en
dc.subject Timbre en
dc.subject Fractal en
dc.subject Multiscale analysis en
dc.subject AM-FM modulations en
dc.subject Energy separation algorithm en
dc.subject Monomodal audio saliency en
dc.subject Audio summarization en
dc.subject Genre classification en
dc.title Επεξεργασία Σημάτων Μουσικής και Εφαρμογές Αναγνώρισης el
dc.title.alternative Music signal processing with application to recognition en
dc.type doctoralThesis el (en)
dc.date.accepted 2013-12-20 -
dc.date.modified 2014-02-06 -
dc.contributor.advisorcommitteemember Καραγιάννης, Γεώργιος el
dc.contributor.advisorcommitteemember Κόλλιας, Στέφανος el
dc.contributor.committeemember Μαραγκός, Πέτρος el
dc.contributor.committeemember Καραγιάννης, Γεώργιος el
dc.contributor.committeemember Κόλλιας, Στέφανος el
dc.contributor.committeemember Τζαφέστας, Κωνσταντίνος el
dc.contributor.committeemember Ποταμιάνος, Γεράσιμος el
dc.contributor.committeemember Πικράκης, Άγγελος el
dc.contributor.committeemember Φωτεινέα, Ευίτα-Σταυρούλα el
dc.contributor.department Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών. Τομέας Σημάτων, Ελέγχου, και Ρομποτικής. Εργαστήριο Όρασης Υπολογιστών, Επικοινωνίας Λόγου και Επεξεργασίας Σήματος el
dc.date.recordmanipulation.recordcreated 2014-09-08 -
dc.date.recordmanipulation.recordmodified 2014-09-08 -


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής