HEAL DSpace

Implementation of a MapReduce Framework on a Network-on-Chip Platform

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Γυφτάκης, Κωνσταντίνος el
dc.contributor.author Gyftakis, Konstantinos en
dc.date.accessioned 2015-03-23T14:26:51Z
dc.date.available 2015-03-23T14:26:51Z
dc.date.issued 2015-03-23
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/40484
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.9385
dc.rights Default License
dc.subject MapReduce en
dc.subject Network-on-Chip (NoC) en
dc.subject Distributed shared memory (DSM) en
dc.subject Many-core embedded systems en
dc.subject Big data en
dc.title Implementation of a MapReduce Framework on a Network-on-Chip Platform en
heal.type bachelorThesis
heal.classification Ενσωματωμένα συστήματα el
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2013-12-17
heal.abstract The purpose of the present diploma thesis is the implementation of a MapReduce framework on a Network-on-chip that has DSM characteristics. MapReduce is a programming model capable of processing large data sets with a parallel distributed algorithm using a large number of processing nodes. Our objective goal was to determine the feasibility of implementing MapReduce on a many-core embedded system as the NoC described, and evaluate its performance in terms of scalability. Furthermore, we wanted to exploit platform’s characteristics in order to provide synchronization and communication among the cores. The proposed framework performed exceptionally, achieving speedups up to x85.2 for 36 cores, when compared to sequential code. Finally, we analyzed the frameworks behaviour while scaling different parameters. This thesis includes five chapters. Chapter 1 contains an introduction to many-core systems, Big Data and MapReduce, as a parallel programming method. In chapter 2, we present the most popular MapReduce frameworks, alternative methods for parallel processing, the limitations of MapReduce and, finally, discuss our objectives. Chapter 3 consists of a presentation of the platform on which the proposed framework was implemented and a detailed overview of the framework. In chapter 4, we exhibit our test configuration, as well as the results of our simulations accompanied with an analysis. In the end, chapter 5 concludes our work and presents some topics and ideas that need future study. en
heal.advisorName Σούντρης, Δημήτριος el
heal.committeeMemberName Πεκμεστζή, Κιαμάλ el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 86 σ.
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής