dc.contributor.author |
Μαυρούτσος, Νικόλαος
|
el |
dc.contributor.author |
Mavroutsos, Nikolaos
|
en |
dc.date.accessioned |
2015-04-01T10:17:18Z |
|
dc.date.available |
2015-04-01T10:17:18Z |
|
dc.date.issued |
2015-04-01 |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/40511 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.3699 |
|
dc.rights |
Default License |
|
dc.subject |
Πολυσυγγραμμικότητα |
el |
dc.subject |
Τυχαιοποιημένος έλεγχος |
el |
dc.subject |
Κορυφογραμμή |
el |
dc.subject |
Συνιστώσες |
el |
dc.subject |
Παλινδρόμηση |
el |
dc.subject |
Multicollinearity |
en |
dc.subject |
PLS |
en |
dc.subject |
Randomization |
en |
dc.subject |
MSEP |
en |
dc.subject |
Cross Validation |
en |
dc.title |
Ανάλυση Δεδομένων με Μοντέλα Παλινδρόμησης PLS |
el |
dc.title |
Data Analysis with PLSR models |
en |
heal.type |
masterThesis |
|
heal.classification |
Μαθηματικά |
el |
heal.classification |
Στατιστική |
el |
heal.classification |
Γραμμικά Μοντέλα Παλινδρόμησης |
el |
heal.classification |
mathematics and statistics |
en |
heal.classification |
Regression |
en |
heal.classification |
Regression analysis--Mathematical models--Evaluation |
en |
heal.classification |
Multiple regression |
en |
heal.classification |
Partial Least Squares Regression |
en |
heal.classificationURI |
http://lod.nal.usda.gov/6369 |
|
heal.classificationURI |
http://zbw.eu/stw/descriptor/15340-1 |
|
heal.classificationURI |
http://id.loc.gov/authorities/subjects/sh2009006877 |
|
heal.classificationURI |
http://zbw.eu/stw/descriptor/15336-6 |
|
heal.language |
el |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2014-10-29 |
|
heal.abstract |
Partial Least Squares (PLS) is a commonly used method for predictive modelling, mostly applicable in the manufacturing industry. In this industry, the number of factors is often large and correlations between factors occur. In such cases, when the main goal of the analyst is prediction rather than the analysis of the relationship between variables, PLS is recommended as a very useful tool.
As far as the present work is concerned, the focus falls particularly on the statistical study of multicollinearity problems in regression analysis and on data analysis with PLSR models. In the first chapter, reference is made to the causes and effects of multicollinearity and to methods of detecting the presence of multicollinearity. Principal Component Regression (PCR) and Ridge Regression (RR) are also proposed as methods for dealing with multicollinearity. In the second chapter, the PLSR model is described as well as methods for selecting models with the highest predictive value. The second chapter also gives a brief overview of how PLSR works, relating it to the preceding multivariate techniques (PCR and RR). Finally, in the third chapter, three examples are presented that demonstrate how PLSR models are evaluated and how their components are interpreted. |
en |
heal.advisorName |
Καρώνη, Χρυσηίς |
el |
heal.committeeMemberName |
Βόντα, Φιλία |
el |
heal.committeeMemberName |
Κουκουβίνος, Χρήστος |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
105 σ. |
en |
heal.fullTextAvailability |
true |
|