HEAL DSpace

Ανάλυση Δεδομένων με Μοντέλα Παλινδρόμησης PLS

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Μαυρούτσος, Νικόλαος el
dc.contributor.author Mavroutsos, Nikolaos en
dc.date.accessioned 2015-04-01T10:17:18Z
dc.date.available 2015-04-01T10:17:18Z
dc.date.issued 2015-04-01
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/40511
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.3699
dc.rights Default License
dc.subject Πολυσυγγραμμικότητα el
dc.subject Τυχαιοποιημένος έλεγχος el
dc.subject Κορυφογραμμή el
dc.subject Συνιστώσες el
dc.subject Παλινδρόμηση el
dc.subject Multicollinearity en
dc.subject PLS en
dc.subject Randomization en
dc.subject MSEP en
dc.subject Cross Validation en
dc.title Ανάλυση Δεδομένων με Μοντέλα Παλινδρόμησης PLS el
dc.title Data Analysis with PLSR models en
heal.type masterThesis
heal.classification Μαθηματικά el
heal.classification Στατιστική el
heal.classification Γραμμικά Μοντέλα Παλινδρόμησης el
heal.classification mathematics and statistics en
heal.classification Regression en
heal.classification Regression analysis--Mathematical models--Evaluation en
heal.classification Multiple regression en
heal.classification Partial Least Squares Regression en
heal.classificationURI http://lod.nal.usda.gov/6369
heal.classificationURI http://zbw.eu/stw/descriptor/15340-1
heal.classificationURI http://id.loc.gov/authorities/subjects/sh2009006877
heal.classificationURI http://zbw.eu/stw/descriptor/15336-6
heal.language el
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2014-10-29
heal.abstract Partial Least Squares (PLS) is a commonly used method for predictive modelling, mostly applicable in the manufacturing industry. In this industry, the number of factors is often large and correlations between factors occur. In such cases, when the main goal of the analyst is prediction rather than the analysis of the relationship between variables, PLS is recommended as a very useful tool. As far as the present work is concerned, the focus falls particularly on the statistical study of multicollinearity problems in regression analysis and on data analysis with PLSR models. In the first chapter, reference is made to the causes and effects of multicollinearity and to methods of detecting the presence of multicollinearity. Principal Component Regression (PCR) and Ridge Regression (RR) are also proposed as methods for dealing with multicollinearity. In the second chapter, the PLSR model is described as well as methods for selecting models with the highest predictive value. The second chapter also gives a brief overview of how PLSR works, relating it to the preceding multivariate techniques (PCR and RR). Finally, in the third chapter, three examples are presented that demonstrate how PLSR models are evaluated and how their components are interpreted. en
heal.advisorName Καρώνη, Χρυσηίς el
heal.committeeMemberName Βόντα, Φιλία el
heal.committeeMemberName Κουκουβίνος, Χρήστος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών el
heal.academicPublisherID ntua
heal.numberOfPages 105 σ. en
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής