dc.contributor.author |
Γεωργιάδης, Ανδρέας - Λάζαρος
|
el |
dc.contributor.author |
Georgiadis, Andreas - Lazaros
|
en |
dc.date.accessioned |
2015-06-17T11:53:01Z |
|
dc.date.available |
2015-06-17T11:53:01Z |
|
dc.date.issued |
2015-06-17 |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/40859 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.9245 |
|
dc.rights |
Default License |
|
dc.subject |
Big data |
en |
dc.subject |
Embedded systems |
en |
dc.subject |
Distributed systems |
en |
dc.subject |
Computer architecture |
en |
dc.title |
Performance monitoring and workload characterization of big data and cloud based applications on the Intel SCC Manycore Platform |
en |
heal.type |
bachelorThesis |
|
heal.classification |
Πληροφορική |
en |
heal.language |
en |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2015-04-27 |
|
heal.abstract |
The scope of this Diploma Thesis is to explore several performance, power consumption
and scalability aspects of the execution of Big Data and Cloud Based workloads on
the Intel Single-chip Cloud Computer Manycore Platform, which differentiates from
typical cluster topologies, since it integrates 48 cores on a single chip. The applications
we study are implemented using the MapReduce framework on top of the Hadoop Distributed
File System. For the purpose of this analysis we have developed a runtime
monitoring infrastructure which utilizes Ganglia, a monitoring tool for large clusters.
Chapter 1 initially states the importance of studying Cloud Computing and Big
Data Applications and presents some basic aspects of the concepts this diploma thesis
deals with. This chapter concludes with the contribution this thesis attempts to make
in the field of scale-out applications and many-core systems.
Chapter 2 describes recent research findings in the related fields of scale-out workloads
and performance and power monitoring of the Intel SCC that have provided the
background and inspiration for this diploma thesis.
Chapter 3 describes the architecture of the Intel SCC in detail, emphasizing on aspects
of the platform whose understanding is crucial for application behavior characterization.
Chapter 4 presents a detailed analysis of the Hadoop Distributed File System and
the MapReduce framework, by discussing key implementation aspects and providing
guidelines of how to configure an HDFS cluster installation and tune the execution of
MapReduce jobs.
Chapter 5 provides a detailed description of the tools that have been used and developed
so as to deploy and launch Hadoop Clusters on the Intel SCC. The Runtime
Environment setup and the Hadoop Cluster installation processes are described and
explained in detail.
Chapter 6 presents the Runtime Monitoring Framework we have developed for the
Intel SCC. The Ganglia Cluster topology we have configured for the Intel SCC is analyzed
and the process of collecting, storing and visualizing runtime metrics is explained.
Chapter 7 describes and explains the experimental analysis we have conducted for
four MapReduce applications when they run on the Intel SCC. Our investigation is
focused on the behavior of those applications for varying input sizes, HDFS cluster
topologies and frequency settings for the cluster nodes.
Chapter 8 concludes the findings of this diploma thesis and presents suggestions for
future work. |
en |
heal.abstract |
Σκοπός αυτής της διπλωματικής εργασίας είναι η μελέτη επίδοσης, κατανάλωσης ισχύος και κλιμακωσιμότητας Big Data και Cloud Based εφαρμογών στην πολυπύρηνη πλατφόρμα Intel SCC. Η πλατφόρμα αυτή διαφοροποιείται από τυπικές τοπολογίες cluster, καθώς ολοκληρώνει 48 πυρήνες πάνω στο ίδιο τσιπ. Οι εφαρμογές που μελετάμε έχουν υλοποιηθεί με Hadoop και MapReduce. Για τους σκοπούς της διπλωματικής έχουμε επίσης αναπτύξει ένα runtime monitoring μηχανισμό, χρησιμοποιώντας το Ganglia, ένα εργαλείο για monitoring μεγάλων clusters. |
el |
heal.advisorName |
Σούντρης, Δημήτριος |
el |
heal.committeeMemberName |
Κοζύρης, Νεκτάριος |
el |
heal.committeeMemberName |
Πεκμετζή, Κιαμάλ |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών. Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων VLSI |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
295 σ. |
|
heal.fullTextAvailability |
true |
|