dc.contributor.author | Andritsos, Georgios | en |
dc.contributor.author | Ανδρίτσος, Γεώργιος | el |
dc.date.accessioned | 2015-11-26T11:12:17Z | |
dc.date.available | 2015-11-26T11:12:17Z | |
dc.date.issued | 2015-11-26 | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/41679 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.11019 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Θερμοδυναμική | el |
dc.subject | Οργανικός Κύκλος Ρανκιν | el |
dc.subject | Δυναμική Μοντελοποιήση | el |
dc.subject | Ανάκτηση Θερμότητας | el |
dc.subject | Thermodynamics | en |
dc.subject | Organic Rankine Cycle (ORC) | en |
dc.subject | Dynamic Modeling | en |
dc.subject | Waste Heat Recovery | en |
dc.title | Μοντελοποίηση σταθερής μονάδας ORC για ανάκτηση απορριπτόμενης θερμότητας σε σταθερές και δυναμικές συνθήκες | el |
dc.title | Steady-state and dynamic modeling of a stationary Waste Heat Recovery ORC power plant | en |
heal.type | bachelorThesis | |
heal.classification | Θερμοδυναμική | el |
heal.language | el | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2015-07-03 | |
heal.abstract | Organic Rankine Cycle (ORC) technology is already playing a major role in the forthcoming energy transition towards sustainability and efficiency. One of the most important advantages of the ORC technology is the fact that it can be applied to various heat sources by using different working fluids. Most of these heat sources show a highly transient character i.e. the exhaust gas in a vehicle, the solar radiation etc. For these applications, advanced control strategies are required for management of ORC power plants for the prevention of emergency situations and to maximize power generation. In order to define implement and test these control strategies, dynamic models of the system must be developed. Firstly the performance of the system is evaluated, through the analysis of 21 steady state points derived from experimental data. Consequently a steady state model is developed and validated. Lastly, a dynamic model of the system is implemented, using different heat exchanger modeling approach. The dynamic models have been developed and parametrized using the ThermoCycle library, and are written using the Modelica language. The aim of this work is to implement a dynamic model as detailed as possible with respect to the real system, together with its control strategy. The system dynamics and the control of the plant have been analyzed, by perturbing the system with a specific signal. Future work related to the development of a set of reference with experimental data that can be used for system validation. | en |
heal.advisorName | Καρέλλας, Σωτήριος | el |
heal.committeeMemberName | Κακαράς, Εμανουήλ | el |
heal.committeeMemberName | Ρακόπουλος, Κωνσταντίνος | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνειο. Σχολή Μηχανολόγων Μηχανικών. Τομέας Θερμότητας | el |
heal.academicPublisherID | ntua | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: