dc.contributor.author | Τζίμα, Σοφία | el |
dc.contributor.author | Tzima, Sofia | en |
dc.date.accessioned | 2016-01-27T10:24:40Z | |
dc.date.available | 2016-01-27T10:24:40Z | |
dc.date.issued | 2016-01-27 | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/41875 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.11155 | |
dc.rights | Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.subject | Συστήματα πραγματικού χρόνου | el |
dc.subject | Μοντέλο λανθάνουσας κατανομής Dirichlet | el |
dc.subject | Πιθανολογικά θεματικά μοντέλα | el |
dc.subject | Κοινωνικά δίκτυα | el |
dc.subject | Real-time systems | en |
dc.subject | Latent Dirichlet allocation | el |
dc.subject | Social networks | el |
dc.subject | Sentiment analysis | el |
dc.subject | Probabilistic topic models | el |
dc.subject | Ανάλυση συναισθήματος | el |
dc.title | Ανάλυση δεδομένων σε κατανεμημένα συστήματα πραγματικού χρόνου | el |
heal.type | bachelorThesis | |
heal.classification | Computer engineering | el |
heal.language | el | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2015-03-27 | |
heal.abstract | The scope of this thesis is the study and development of real-time systems, which process large collections of documents and draw conclusions about their content and emotion. We studied different nature algorithms in order to determine both the performance of the used tools and the real-time response of the algorithm, using metrics such as memory usage, the amount of data units processed per second, as well as the responsiveness of the system under severe time constraints. The usefulness of real-time systems that process document collections, in order to draw conclusions about their content, becomes obvious if we consider the raise of social networks as modern forms of communication and expression. The analysis of user created content in social networks, allows us to compute useful statistics about the feeling that prevails in public opinion around a particular theme. During the study, algorithms from the areas of probabilistic topic modelling and sentiment analysis were analyzed. We implemented those algorithms using Apache Storm, and created topologies that run endlessly in a Storm cluster. Those topologies accept data as a stream of events and export real-time information about them. Such systems are capable of monitoring events and making immediate decisions, based on them. (el) | en |
heal.advisorName | Βαρβαρίγου, Θεοδώρα | el |
heal.committeeMemberName | Λούμος, Βασίλειος | el |
heal.committeeMemberName | Καγιάφας, Ελευθέριος | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών. Εργαστήριο Συστημάτων Βάσεων Γνώσεων και Δεδομένων | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 80 σ. | el |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: