HEAL DSpace

Stochastic dynamic response and optimization of structures with finite elements

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Κόκκινος, Οδυσσέας el
dc.contributor.author Kokkinos, Odysseas en
dc.date.accessioned 2016-02-17T12:58:47Z
dc.date.available 2016-02-17T12:58:47Z
dc.date.issued 2016-02-17
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/42023
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.2136
dc.rights Default License
dc.subject Dynamic Variability Response Functions en
dc.subject Robust Design Optimization en
dc.subject Stochastic Dynamic Analysis en
dc.subject Sensitivity Analysis en
dc.subject Multi Objective Genetic Algorithm en
dc.subject Δυναμικές Συναρτήσεις Διακύμανσεις της Απόκρισης el
dc.subject Στοχαστική Δυναμική Ανάλυση el
dc.subject Εύρωστος Βέλτιστος Σχεδιασμός el
dc.subject Πολυαντικειμενικοί Γενετικοί Αλγόριθμοι el
dc.subject Ανάλυση Ευαισθησίας el
dc.title Stochastic dynamic response and optimization of structures with finite elements en
heal.type doctoralThesis
heal.classification Structural engineering en
heal.classificationURI http://zbw.eu/stw/descriptor/18495-6
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2015-12-15
heal.abstract Establishing reliable and computationally efficient methodologies in stochastic dynamic analysis is a continuing effort in academic research. The first part of this thesis is emphasizing on developing a methodology that provides an alternative way of analyzing stochastic dynamic systems. More specifically, the concept of Variability Response Functions (VRFs) is extended initially to linear and then to general finite element stochastic systems leading to closed form integral expressions for their dynamic mean and variability response. An integral form for the variance of the dynamic response of stochastic systems is considered, involving a Dynamic VRF (DVRF) and the spectral density function of the stochastic field modeling the uncertain system properties. A finite element method-based fast Monte Carlo simulation procedure is used for the accurate and efficient numerical evaluation of these functions. As in the case of linear stochastic systems under static loads, the independence of the DVRF to the spectral density and the marginal probability density function of the stochastic field modeling the uncertain parameters is assumed. This assumption is here validated with brute-force Monte Carlo simulations. As a further validation of the assumption of independence of the variability response function to the stochastic parameters of the problem, the concept of the generalized variability response function was applied and compared to the steady state dynamic variability response function. The uncertain system property considered is the inverse of the elastic modulus (flexibility). The dynamic mean and variability response functions, once established, can be used to perform sensitivity/parametric analyses with respect to various probabilistic characteristics involved in the problem (i.e., correlation distance, standard deviation) and to establish realizable upper bounds on the dynamic mean and variance of the response, at practically no additional computational cost. They also provide an insight into the mechanisms controlling the dynamic mean and variability system response. The second part of this thesis focuses on proposing an alternative approach on Robust Design Optimization (RDO) implementing the concept of Variability Response Function (VRF). The basic idea is to exploit the VRF independence of the stochastic system parameters, in order to obtain safer optima that depend only on the deterministic parameters of the problem. This way, optimal structural designs are achieved which are optimally insensitive to the worst possible uncertainties, that is to say they are free of the spectral-distribution characteristics of the stochastic fields modeling the uncertainties. This is achieved by setting in addition to the total material cost, the maximum VRF value as an objective function. The advantages of using the proposed methodology over traditional Robust Design Optimization are illustrated through an application to a frame-type structure where it is demonstrated that the designs achieved through classical RDO for a given stochastic field description are not optimal for a variation on the spectral properties of the random field modeling the system uncertainty, while optimal designs obtained with the VRF-based RDO are optimum for the worst case scenario stochastic fields. en
heal.advisorName Παπαδόπουλος, Βησσαρίων el
heal.committeeMemberName Παπαδόπουλος, Βησσαρίων el
heal.committeeMemberName Παπαδρακάκης, Μανόλης el
heal.committeeMemberName Σταυρίδης, Λεονίδας el
heal.committeeMemberName Σπηλιόπουλος, Κωνσταντίνος el
heal.committeeMemberName Προβατίδης, Χριστόφορος el
heal.committeeMemberName Λαγαρός, Νικόλαος el
heal.committeeMemberName Βαμβάτσικος, Δημήτριος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Στατικής και Αντισεισμικών Ερευνών el
heal.academicPublisherID ntua
heal.numberOfPages 202 σ.
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής