HEAL DSpace

Βέλτιστη τοποθέτηση μονάδων μέτρησης φασιθετών με ανοσοποιητικό γενετικό αλγόριθμο

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Πουλιόπουλος, Αλκιβιάδης el
dc.contributor.author Pouliopoulos, Alkiviadis en
dc.date.accessioned 2016-05-30T06:14:01Z
dc.date.available 2016-05-30T06:14:01Z
dc.date.issued 2016-05-30
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/42555
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.9913
dc.rights Default License
dc.subject Παρατηρησιμότητα δικτύου el
dc.subject Γενετικός αλγόριθμος el
dc.subject Ανοσοποιητικός γενετικός αλγόριθμος el
dc.subject Μονάδες μέτρησης φασιθετών el
dc.subject Βέλτιστη τοποθέτηση μονάδων μέτρησης φασιθετών el
dc.subject Network observability analysis en
dc.subject Genetic algorithm en
dc.subject Immunity genetic algorithm en
dc.subject Phasor measurement units en
dc.subject Optimal PMU placement (OPP) problem en
dc.title Βέλτιστη τοποθέτηση μονάδων μέτρησης φασιθετών με ανοσοποιητικό γενετικό αλγόριθμο el
heal.type bachelorThesis
heal.classification Electrical engineering en
heal.language el
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2015-10-20
heal.abstract The current Diploma Thesis deals with the optimal placement problem of Phasor Measurement Units (PMUs), in order to achieve full network observability. The objective of the Optimal PMU Placement (OPP) problem is to minimize the number of PMUs to be installed subject to full network observability. Initially, the Thesis presents the basic features of the PMU, the historical development of the PMU, as well as a comparison with the SCADA technology. Furthermore, this Thesis presents a topological method for full power system observability. Genetic Algorithm and Immunity Genetic Algorithm are proposed to solve the OPP combinatorial optimization problem. Genetic algorithms are meta-heuristic algorithms that mimic the process of natural selection. The proposed methods are implemented by developing appropriate software and graphical user interface (GUI) in MATLAB. The developed software was applied to IEEE 14, 30, 57 and 118-bus systems. The obtained results are analyzed and conclusions are drawn for the efficiency of the two methods. en
heal.abstract The current Diploma Thesis deals with the optimal placement problem of Phasor Measurement Units (PMUs), in order to achieve full network observability. The objective of the Optimal PMU Placement (OPP) problem is to minimize the number of PMUs to be installed subject to full network observability. Initially, the Thesis presents the basic features of the PMU, the historical development of the PMU, as well as a comparison with the SCADA technology. Furthermore, this Thesis presents a topological method for full power system observability. Genetic Algorithm and Immunity Genetic Algorithm are proposed to solve the OPP combinatorial optimization problem. Genetic algorithms are meta-heuristic algorithms that mimic the process of natural selection. The proposed methods are implemented by developing appropriate software and graphical user interface (GUI) in MATLAB. The developed software was applied to IEEE 14, 30, 57 and 118-bus systems. The obtained results are analyzed and conclusions are drawn for the efficiency of the two methods. en
heal.advisorName Γεωργιλάκης, Παύλος el
heal.committeeMemberName Γεωργιλάκης, Παύλος el
heal.committeeMemberName Κορρές, Γεώργιος el
heal.committeeMemberName Παπαθανασίου, Σταύρος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Ηλεκτρικής Ισχύος el
heal.academicPublisherID ntua
heal.numberOfPages 104 σ. el
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής