HEAL DSpace

Electric vehicles and traffic related pollution reduction: a simulation model for Hamilton, Ontario, Canada

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Παπαργύρη, Ευαγγελία el
dc.contributor.author Papargyri, Evangelia en
dc.date.accessioned 2016-09-30T08:51:02Z
dc.date.available 2016-09-30T08:51:02Z
dc.date.issued 2016-09-30
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/43699
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.10919
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Γεωπληροφορική” el
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Electric mobility en
dc.subject Simulation en
dc.subject Traffic emissions en
dc.subject Regression model en
dc.subject Hamilton CMA en
dc.subject Moντέλο παλινδρόμησης el
dc.subject Ηλεκτρικά οχήματα el
dc.title Electric vehicles and traffic related pollution reduction: a simulation model for Hamilton, Ontario, Canada en
heal.type bachelorThesis
heal.classification Geographical information systems en
heal.classificationURI http://skos.um.es/unescothes/C01671
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2014-03-28
heal.abstract This paper analyzes the potential contribution of electric vehicles in greenhouse gas (GHG) emissions reduction over the next decade. The effect of electric vehicles (EVs) on traffic related pollution is assessed at the transportation link level in the Hamilton Census Metropolitan Area (CMA) following a simulation procedure from 2006 to 2021. The traffic emissions considered in this paper are: total hydrocarbons (HC), nitrogen oxides (NOx), carbon monoxide (CO) and a basic estimate of carbon dioxide (CO2). Emissions were estimated through a number of steps. Firstly, different EV market penetration scenarios were introduced (conservative, medium, optimistic) and compared to the base case scenario where no action or minimum policy controls are supposed to take place over the next couple of decades. Scenarios were determined through a comprehensive review of penetration estimates in the literature. Following these, the spatial distribution patterns of EVs were predicted using the vehicle registration data for the Hamilton CMA along with socioeconomic data obtained from 2006 census. Different distribution patterns of EVs adoption were assessed creating sub-scenarios, in order to reflect the possible changes in the future. Subsequently, the results from the regression model were used to properly modify the Origin-Destination (OD) matrices by type of vehicle. These matrices were used as input into our traffic simulation model (TRAFFIC) that assigns traffic on the network and estimates volumes for each of the links. MOBILE 6.2C was customized to accept the new vehicle type and to compute the emission factors. The hourly emissions on each link were mapped through a geographic information system (GIS) framework after the integration of three parameters: street network, associated traffic flows and emissions (Link_emissions model). We conclude that different distribution patterns produce different spatial patterns of traffic related emissions in the links and even a modest adoption of EV technology may lead to significant reduction in traffic emissions. en
heal.advisorName Φώτης, Γεώργιος el
heal.committeeMemberName Φώτης, Γεώργιος el
heal.committeeMemberName Σιόλας, Άγγελος el
heal.committeeMemberName Βλαστός, Αθανάσιος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Αγρονόμων και Τοπογράφων Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 93 σ. el
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα